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Wei-Chau Xie

Qinghua Huang

Department of Civil and Environmental
Engineering,

University of Waterloo,
Waterloo, ON, N2L 3G1, Canada

Simulation of Moment Lyapunov
Exponents for Linear
Homogeneous Stochastic
Systems
Moment Lyapunov exponents are important characteristic numbers for describing the
dynamic stability of a stochastic system. When the pth moment Lyapunov exponent is
negative, the pth moment of the solution of the stochastic system is stable. Monte Carlo
simulation approaches complement approximate analytical methods in the determination
of moment Lyapunov exponents and provides criteria on assessing the accuracy of ap-
proximate analytical results. For stochastic dynamical systems described by Itô stochas-
tic differential equations, the solutions are diffusion processes and their variances may
increase with time. Due to the large variances of the solutions and round-off errors, bias
errors in the simulation of moment Lyapunov exponents are significant in improper nu-
merical algorithms. An improved algorithm for simulating the moment Lyapunov expo-
nents of linear homogeneous stochastic systems is presented in this paper.
�DOI: 10.1115/1.3063629�

1 Introduction
Consider a general d-dimensional linear homogeneous stochas-

tic dynamical system:

Ẋ�t� = A���t��X�t�, X�0� = X0 �1.1�

where A is analytic, and ��t�= ��1�t� ,�2�t� , . . . ,�r�t��T is an
r-dimensional vector of stochastic processes. According to the
works by Arnold et al. �1–3�, under rather general conditions, the
pth moment Lyapunov exponent of system �1.1�, which is defined
by

��p� = lim
t→�

1

t
log E��X�t��p� �1.2�

exists and characterizes the stability of the pth moment of the
solution X�t�, where E�·� denotes the expected value and � · � de-
notes a suitable vector norm. The pth moment of the solution of
system �1.1� E��X�t��p� is asymptotically stable if ��p��0. The
slope of the pth moment Lyapunov exponent ��p� at p=0, i.e.,
���0�, is equal to the largest Lyapunov exponent �, which is
defined as

� = lim
t→�

1

t
log�X�t�� �1.3�

and describes the almost-sure or sample stability of the system.
When the largest Lyapunov exponent � is negative, system �1.1� is
asymptotically stable with probability 1.

Even if the solution of system �1.1� is almost surely stable with
��0, i.e., �X�t��→0 as t→� with probability 1 at the exponen-
tial rate �, it is still possible that the pth moment is unstable, i.e.,
��p��0, since generally almost-sure convergence cannot assure
moment convergence. It is therefore important to obtain the mo-
ment Lyapunov exponents so that the complete dynamic stability
behavior of stochastic system �1.1� can be described.

Although it is quite straightforward to set up the partial differ-
ential eigenvalue problem with the pth moment Lyapunov expo-
nent ��p� as the principal eigenvalue �1–5�, the actual solution of
the eigenvalue problem is very difficult. For certain simple two-
dimensional or four-dimensional systems, approximate analytical
methods, such as stochastic averaging or perturbation, have been
applied to obtain approximate analytical results of the moment
Lyapunov exponent ��p� �see, e.g., Refs. �6–11��.

In general, numerical approaches, such as Monte Carlo simula-
tions, have to be applied to determine the moment Lyapunov ex-
ponents. Furthermore, even when approximate analytical results
are available, their accuracy have to be verified by numerical
simulations.

When investigating the stability of a general stochastic dynami-
cal system, it is usual to consider the corresponding linearized
system near its stationary solution. The linearized system is ho-
mogeneous. This shows the importance of linear homogeneous
systems in the research of stochastic dynamical systems.

There are some references discussing the numerical approxima-
tion of Lyapunov exponents, such as Refs. �12,13�. However, to
the best knowledge of the authors, there is only one numerical
algorithm for determining the moment Lyapunov exponents using
Monte Carlo simulation published so far �14�, which is described
briefly in Sec. 2.

2 Numerical Algorithm Using Sample Norm
Consider the d-dimensional linear homogeneous stochastic dy-

namical system �1.1�. In the cases that ��t� is described by Itô or
Stratonovich stochastic differential equations, Eq. �1.1� is solved
using an appropriate numerical discretization scheme with a time
step h. To have an accurate estimation of the pth moment,
E��X�t��p�, a large number of sample realizations must be simu-
lated since the evaluation of expectation is determined by the
sample average.

When system �1.1� is stable, the solution decays exponentially
in time, whereas, when it is unstable, the solution grows exponen-
tially with time. To avoid float-point data overflow or underflow, it
is essential to devise an appropriate scheme to normalize the so-
lutions regularly during simulation. In practice, there is no need to

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received March 14, 2006; final manu-
script received October 2, 2008; published online March 3, 2009. Review conducted
by N. Sri Namachchivaya.
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normalize the solution at every iteration. Suppose the solution is
normalized after every K iterations or after every time period TN
=Kh.

Let Sd−1 be the unit sphere in d-dimensional space Rd. For a
given initial condition X�0�=X0�Sd−1, i.e., �X0�=1, and simula-
tion time T=MTN, one has

�X�T�� = �X�T,X0�� = �
m=1

M
�X�mTN,X0��

�X��m − 1�TN,X0��
�2.1�

Since Eq. �1.1� is linear homogeneous, it can be seen that

Xm�t� =
X��m − 1�TN + t,X0�
�X��m − 1�TN,X0��

, m = 1,2, . . . �2.2�

solves Eq. �1.1� with the initial condition

Xm�0� =
X��m − 1�TN,X0�

�X��m − 1�TN,X0��
� Sd−1 �2.3�

Thus,

�X�T�� = �
m=1

M

�Xm�TN�� �2.4�

Equations �2.2� and �2.3� indicate that normalization procedure
can be performed for every time period TN such that the solution
of the stochastic differentials always restarts from initial condi-
tions with unit norm right after the normalization �see Fig. 1�.

Let Xh denote the solution from appropriate numerical discreti-
zation scheme with time step h. For a large simulation time T with
M large, the pth moment Lyapunov exponent should be approxi-
mated as

�̄h�p� =
1

T
log E��Xh�T��p� =

1

MTN
log E	�

m=1

M

�Xm
h �TN��p


�2.5�

In the algorithm in Ref. �14�, the pth moment Lyapunov expo-
nent is evaluated as

�̄h�p� =
1

MTN
log�

m=1

M

E��Xm
h �TN��p� �2.6�

where the expectation is determined by the sample average

E��Xm
h �TN��p� =

1

N�
s=1

N

�Xm
h,s�TN��p �2.7�

with N being the sample size for simulation and Xm
h,s being the sth

sample path of Xm
h .

It is obvious that Eqs. �2.5� and �2.6� are different since all
�Xm

h �TN�� are dependent and thus the expectation operation and
the product operation cannot be interchanged. Notice that Eq.
�2.6� can be rewritten as

�̄h�p� =
1

M �
m=1

M
1

TN
log E��Xm

h �TN��p� �2.8�

It actually gives the average of M moment Lyapunov exponents
simulated for a time period of TN rather than the moment
Lyapunov exponent simulated for a long time period of T=MTN.
Theoretically, the larger the value of TN, the more accurate the
approximation. Unfortunately, to avoid float-point data overflow
and underflow, the value of TN cannot be very large. Although
each simulation of the moment Lyapunov exponent for a rela-
tively short time period of TN may not be accurate, for some
systems the algorithm based on Eq. �2.6� yields satisfactory re-
sults because of the central limit theorem. However, there are
systems for which Eq. �2.6� leads to erroneous results.

One possible revision to correct the insufficiency of algorithm
�2.6� for linear homogeneous systems is to normalize the solutions
by their expectations but not their norms, as shown in Eq. �2.2�.
With unit norm initial condition and the definition

Ym
h �t� =

Xh��m − 1�TN + t,X0�
E��Xh��m − 1�TN,X0���

, m = 1,2, . . . �2.9�

the approximate moment Lyapunov exponents at time T are given
by

�̄h�p� =
1

MTN

�log� E��Xh�MTN��p�
E��Xh��M − 1�TN���p �

m=1

M−1
E��Xh�mTN���p

E��Xh��m − 1�TN���p
=

1

MTN
�log E	� Xh�MTN�

E��Xh��M − 1�TN���
�p


+ �
m=1

M−1

p log E	� Xh�mTN�
E��Xh��m − 1�TN���

�

=

1

MTN
�log E��YM

h �TN��p� + �
m=1

M−1

p log E��Ym
h �TN���

�2.10�
The solution of Eq. �1.1� may be a diffusion process and its

variance may increase significantly with time. Although Eq. �2.10�
is exact theoretically when M is large enough, there are two main
sources that will lead to significant numerical errors.

First, according to the central limit theorem, for independent
and identically distributed �i.i.d.� random variables x1 ,x2 , . . . with
the same mean value � and variance 	2, the distribution of sample
average x̄= ��s=1

N xs� /N will tend to the normal distribution
N�� ,	2 /N�. This means that Eq. �2.7� will not give acceptable
results of the expected values when the variances of the solutions
are so large that it is impossible to reduce the error of estimation
to an acceptable level with a finite number of samples.

Second, due to the finite lengths of floating-point representa-
tions in computers, when two numbers are summed up, the
smaller one will be neglected if the difference of their exponent
bits exceeds the limit. If the system is unstable, its solution grows
exponentially with time. Even when the system is stable and the
chance that the solution takes extremely large values may be rare,
once it happens, all the contributions from other samples will be
eliminated. Thus this truncated error in estimating the expecta-
tions will be dominant in simulations with large variances.

||Xm−1(t)||

(m−1)TN

1

true solution

mth normalized
solution

(m−2)TN mTN
t(m+1)TN

||X(t)||

||X((m+1)TN)||

||X(mTN)||

||X((m−1)TN)|| ||Xm(t)||

||Xm+1(t)||

Fig. 1 Growth of the solution and normalization
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To illustrate, consider the first-order linear homogeneous sto-
chastic system

dx�t� = ax�t�dt + 	x�t�dW�t� �2.11�

where a and 	 are real constants. The pth moment Lyapunov
exponent can be easily determined as

��p� = lim
t→�

1

t
log E��x�t��p� =

p

2
��p − 1�	2 + 2a�

and the variance of norm is

var��x�t��� = E��x�t��2� − �E��x�t����2 = e2at�e	2t − 1�

Figure 2 shows the numerical results of the moment Lyapunov
exponents for a=0, 	=1, and different values of the total time of
simulation T, in which Eq. �2.11� is solved numerically using the
explicit Euler scheme. The time step for iteration is h=0.001, the
sample size is N=5000, and Eq. �2.10�, i.e., the revised algorithm,
is used to determine the approximate moment Lyapunov expo-
nents. It is obvious that the longer the time T for simulation, the
worse the results. Because the variance of �x�t�� increases expo-
nentially with time, it is impossible to get an accurate estimate of
the pth moment using sample average from finite sample sizes N
for t large.

3 Estimation of the Expectation Through Logarithm
of Norm

Because of the possible large errors in simulating moment
Lyapunov exponents with increasing time of simulation, it is re-
quired to develop a new algorithm to overcome the difficulty in
estimating the moments. Since the errors are caused by large vari-
ances of the solutions, it is clear that how to reduce the variances
in order to obtain a good estimation of the moments using a finite
number of samples is the key.

Notice that

log E��X�T��p� = log E�ep log�X�T��� = C�p� �3.1�

where C�p� is the cumulant generating function of log�X�T��. In
the special case when log�X�T�� is normal, C�p� takes the simple
form

C�p� = pE�log�X�T��� + 1
2 p2 var�log�X�T��� �3.2�

where var�·� denotes the variance. Therefore, it may be possible to
use the statistical properties of log�X�T�� in estimating the mo-
ment Lyapunov exponents.

3.1 Asymptotic Normality of Logarithm of Norm. Since
the simulation of stochastic dynamical systems is based on the
theory of stochastic integrals, it is natural to start with the follow-
ing d-dimensional Itô stochastic differential equation:

dX�t� = B0�X,t�dt + �
i=1

r

Bi�X,t�dWi �3.3�

When the system is linear homogeneous with constant coeffi-
cients, Eq. �3.3� takes the form

dX�t� = B0X�t�dt + �
i=1

r

BiX�t�dWi �3.4�

where Bi, i=0,1 , . . . ,r, are the d�d constant matrices. Let 
�t�
=log�X�t��. It has been shown �Ref. �15�, p. 243� that the limit
distribution of �
�t�−�t� /�var�
�t�� is standard normal as t→� if
var�
�t��→�, and there exists a constant � such that, for any
vector Y,

�
i=1

r

�YTBiX�2 � ��X�2�Y�2 �3.5�

is satisfied.
However, in applications, there are many cases that the nonde-

generate condition �3.5� is not satisfied. An extended result by
Arnold et al. �2� shows that, for any X�0��0,

lim
t→�

1

t

�t� = � a.s., lim

t→�

1

t
log E��X�t��p� = ��p� �3.6�

and the normalized 
�t� converges weakly to Gaussian distribution
with


�t� − �t
�t

→
distribution

N�0,���0��, t → � �3.7�

provided that

dim LA�gi:0  i  r��s� = d − 1 for all s � PJ d−1

�3.8�

where LA�gi� denotes the Lie algebra generated by the set of
vector fields gi, dim denotes the dimension, PJd−1 denotes the
projective space obtained from Sd−1 by identifying s=−s, and gi
are given by

g0�s� = g�B0 −
1

2�
i=1

r

Bi
2,s�, gi�s� = g�Bi,s�, i = 1, . . . ,r

�3.9�

in which g is defined as, for any d�d matrix B and s�Sd−1,

g�B,s� = �B − �sTBs�I�s = Bs − �sTBs�s �3.10�
The linear homogeneous system with constant coefficients, i.e.,

Eq. �3.4�, can be converted to the Stratonovich form. Thus it can
describe the stochastic dynamical system

Ẋ�t� = �B0 −
1

2�
i=1

r

Bi
2 + �

i=1

r

Bi�i�t��X�t� = A���t��X�t�

with �i�t� , i=1, . . . ,r being the unit Gaussian white noises. It is
very likely that noises �i�t� take other forms. The result obtained
by Arnold et al. �1,3� solves this problem under some conditions.

Return to the general d-dimensional linear homogeneous sys-
tem �1.1�, with ��t� being a stationary ergodic diffusion vector
process on a connected smooth manifold M described by Stra-
tonovich stochastic differential equation:

Fig. 2 Simulation of moment Lyapunov exponents for a first-
order linear system
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d��t� = Q0���t��dt + �
i=1

r

Qi���t�� � dWi. �3.11�

where Qi, i=0, . . . ,r, are smooth. If

dim LA�Qi:1  i  r���� = dim M for all � � M
�3.12�

dim LA�g�A���,s�:� � M��s� = d − 1 for all s � PJ d−1

�3.13�

then for any X�0��0, Eqs. �3.6� and �3.7� are still true. Fortu-
nately, condition �3.13� is satisfied for most problems frequently
considered in engineering applications �1�. Moreover, conditions
�3.12� and �3.13� can be replaced by

dim LA�Q0 + g�A,s� +
�

�t
,Q1, . . . ,Qr���,s,t� = dim M

+ d for all ��,s,t� � M � PJ d−1 � R �3.14�

As a result of Eqs. �3.6� and �3.7�, one can write �6�

��p� = �p + 1
2���0�p2 + O�p2� �3.15�

3.2 Estimation Through Logarithm of Norm. Suppose
�X�T�� is obtained for linear homogeneous systems �3.4� or �1.1�,
and the corresponding system satisfies conditions �3.8�, or �3.12�
and �3.13�. When T is large enough and X�0��0, 
�T�
=log�X�T�� is near Gaussian according to the discussion in Sec.
3.1.

Let Xh�T� still be the solution at time T obtained from an ap-
propriate numerical discretization scheme with time step h, and
Xh,s�T�, s=1,2 , . . . ,N, be the different samples of Xh�T�. Then
Xh,s�T� can be treated as i.i.d. random vectors with the same dis-
tribution as Xh�T�. Thus the pth moment Lyapunov exponent is
approximated as

�̄h�p� =
1

T
log E��Xh�T��p� =

1

NT
log��

s=1

N

E��Xh,s�T��p�
=

1

NT
log E	exp�p�

s=1

N

log�Xh,s�T���
 �3.16�

By defining


̄h�T� = log�Xh�T��

�̄T
h = E�
̄h�T��, �	̄T

h�2 = var�
̄h�T��


̂h,s�T� =

̄h,s�T� − �̄T

h

	̄T
h , RN = �

s=1

N


̂h,s�T� �3.17�

Eq. �3.16� becomes

�̄h�p� =
1

NT
log E�exp�p�̄T

hN + p	̄T
hRN�� = p

�̄T
h

T
+

1

NT
log E�ep	̄T

hRN�

�3.18�

With the notation

�N =
RN

�N
�3.19�

Eq. �3.18� is converted to

�̄h�p� = p
�̄T

h

T
+

1

NT
log E�e�Np	̄T

h�N� �3.20�

Let F�
�N�x� be the cumulative distribution function of �N, then

F�
�N�x� tends to the standard normal distribution of N�0,1� as N

→� according to the central limit theorem, i.e., F�
�N�x�→��x�,

uniformly, where ��x� is the standard normal distribution function

��x� =
1

�2�
�

−�

x

exp�−
y2

2
�dy

Using the Edgeworth expansion theorem for distribution �16,17�,
one may have

F�
�N�x� = ��x� + �

k=3

�

ck�
�k��x� �3.21�

where the coefficients ck can be determined by the equality of
moments on both sides of Eq. �3.21�. Notice that �N has zero mean
and unit variance. If the kth central moment of 
̄h�T� is �̄k

h, for
k�3, then using integration by parts, it is easy to deduce from Eq.
�3.21� that

c3 = −
1

6

�̄3
h

�N�	̄T
h�3

, c4 =
1

24

�̄4
h − 3�	̄T

h�4

N�	̄T
h�4 ,¯

Therefore, Eq. �3.20� yields

�̄h�p� = p
�̄T

h

T
+

1

NT
log�

−�

�

e�Np	̄T
hxdF�

�N�x�

= p
�̄T

h

T
+

1

NT
log�e1/2Np2�	̄T

h�2
�1 − N3/2p3�	̄T

h�3c3

+ N2p4�	̄T
h�4c4

+ ¯�� = p
�̄T

h

T
+

1

2
p2 �	̄T

h�2

T

+
1

NT
log�1 +

1

6
Np3�̄3

h

+
1

24
Np4��̄4

h − 3�	̄T
h�4� + ¯ �3.22�

The tail distribution of F�
�N�x� is of paramount significance,

since it is required to determine the expectation of e�Np	̄T
h
�N in Eq.

�3.20� from a finite sample size N in simulation. This means that
accurate higher-order moments of 
̄h�T� are required in order to

obtain a good approximation of E�e�Np	̄T
h
�N�. However, it is very

difficult to do so in practice. If only lower-order moments are
considered, the estimation error of moments may make the sum of
a finite number of terms within the argument of the last logarithm
in Eq. �3.22� be negative when N becomes large, which will lead
to invalid operation in simulation. Therefore, the distribution of

̄h�T� has to be considered to find an appropriate estimation.

Noticing that Eq. �3.2� is true for normal distribution, one may
attempt to see if the last logarithm term in Eq. �3.22� can be
dropped in simulation since the distribution of the normalized

̄h�T� approaches normal as T goes to infinity.

From the definition of 
̂h,s�T�, it can be seen that 
̂h,s�T�, s
=1,2 , . . . ,N, are i.i.d. random variables with zero mean and unit
variance. Moreover, using Eq. �3.1�, it is obvious that the exis-
tence of moment Lyapunov exponents ensures that E�e�
̂h,s�T��
�� for ����0, where �0 is some constant. Then according to
the theorem proved by Komlós et al. �18,19�, a sequence of stan-
dard normal random variables zs, s=1,2 . . . ,N, can be constructed
such that, for every N and all x�0, the partial sums Rk

=�s=1
k 
̂h,s�T� and Vk=�s=1

k zs satisfy
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P�max
kN

�Rk − Vk� � C0 log N + x� � �0e−�x �3.23�

where P�·� denotes the probability, C0, �, and �0 depend only on
the distribution of 
̂h,s�T�, and � can be as large as possible by
choosing C0 large enough. Thus it follows �RN−VN�=O�log N�
almost surely for every N �18,19�.

Considering the near normality of 
̂h,s�T� and the finite sample
size, events with zero probability are treated as not likely to hap-
pen in simulation. This means that RN is replaced by VN
+O�log N� in the evaluation of expectation and thus Eq. �3.18� is
approximated as

�̄h�p� = p
�̄T

h

T
+

1

NT
log E�ep	̄T

h�VN+O�log N���

= p
�̄T

h

T
+

1

2
p2 �	̄T

h�2

T
+ O� log N

N
� �3.24�

Hence, when the sample size N is large enough, by neglecting the
last term in Eq. �3.24� and estimating the mean and variance of
logarithm of norm, the pth moment Lyapunov exponent is given
by

�̄h�p� =
1

T
�pE�log�Xh�T��� +

1

2
p2 var�log�Xh�T���

�3.25�

It is obvious that the variance of log�Xh�T�� will be much smaller
than the variance of �Xh�T�� when �Xh�T�� becomes large; there-
fore, obtaining a good estimation of the pth moment Lyapunov
exponent through sample average is possible.

From Eq. �3.25�, one also sees that the largest Lyapunov expo-
nent can be approximated as

�̄h =
1

T
E�log�Xh�T��� �3.26�

which is the same result as given by Talay �12�.

4 Algorithm for Linear Homogeneous Stochastic
Systems

Following Eq. �3.25�, an algorithm for simulating the moment
Lyapunov exponents of linear homogeneous stochastic dynamical
system �3.4�

dX�t� = B0X�t�dt + �
i=1

r

BiX�t�dWi

and system �1.1�

Ẋ�t� = A���t��X�t�

d��t� = Q0���t��dt + �
i=1

r

Qi���t�� � dWi

can be described as follows. Since the simulation requires the
statistical properties of logarithm of the norm, the normalization
operation described in Sec. 2 can be applied.

Step 1. Use an appropriate time discrete approximation, such as
the Euler scheme, to discretize system �3.4� or �1.1� with time step
h. Details of various numerical schemes for solving stochastic
differential equations can be found in Ref. �20�.

Step 2. Set the initial conditions of the state vector Xh�t ,Xh�0��,
by Xh�0��Sd−1, i.e.,

�Xh,s�0�� = 1, s = 1,2, . . . ,N

where N is the sample size, and �X�=�XTX is the Euclidean norm
of vector X.

Step 3. Solve the discretized system iteratively. Apply the nor-
malization procedure as described in Sec. 2, i.e., normalization is
performed after every K iterations or after every time period TN
=Kh. At the mth normalization, or at t=mTN, the sth sample is
normalized using Eq. �2.3�, i.e.,

Xm+1
h,s �0� =

Xh,s�mTN,Xh,s�0��
�Xh,s�mTN,Xh,s�0���

=
Xm

h,s�TN,Xm
h,s�0��

�Xm
h,s�TN,Xm

h,s�0���
, m = 1,2, . . .

Simulation is then continued with the initial condition Xm+1
h,s �0�

with �Xm+1
h,s �0��=1 for another K iterations.

Step 4. Defining


̄h,s�mTN� = log�Xh,s�mTN,Xh,s�0��� ,


̄m
h,s�TN� = log�Xm

h,s�TN,Xm
h,s�0���

then, using Eq. �2.4�,


̄h,s�MTN� = log�Xh,s�MTN,Xh,s�0���

= log	�
m=1

M

�Xm
h,s�TN,Xm

h,s�0���
 = �
m=1

M


̄m
h,s�TN�

Step 5. After KM iterations, i.e., at time T=MKh, use the fol-
lowing equations:

E�log�Xh�T��� = E�
̄h�T�� =
1

N�
s=1

N


̄h,s�T� = �̄T
h

var�log�Xh�T��� = var�
̄h�T�� =
1

N − 1�
s=1

N

�
̄h,s�T�2 − ��̄T
h�2� = �	̄T

h�2

�4.1�

to estimate the mean and variance of log�Xh�T��.
Step 6. Use Eq. �3.25�, combining with Eqs. �4.1�, i.e.,

�̄h�p� =
1

T
	p�̄T

h +
1

2
p2�	̄T

h�2
 �4.2�

to calculate the moment Lyapunov exponents for all values of p of
interest.

To obtain a more accurate estimation of the mean and variance
of log�Xh�T��, large sample size N has to be used. Moreover, time
for simulation T has to be large enough to get a good approxima-
tion of moment Lyapunov exponents. This means iteration times
in solving the system will be extremely large. Since the simulation
of different samples can be implemented independently, parallel
computation using Message Passing Interface1 �MPI� or OPENMP

application program interface2 will be a great benefit to the simu-
lation of moment Lyapunov exponents.

It should be mentioned that although higher-order schemes lead
to more accurate results, it is easier to implement the Monte Carlo
simulation using Euler scheme due to its simple form, especially
when the system is high dimensional and complicated. Moreover,
Romberg extrapolation may be applied to increase the precision of
results to O�h2� using Euler scheme, which is the order of O�h�
�21�.

5 Examples in Application
The Monte Carlo simulation algorithm presented in Sec. 4 is

applicable to linear homogeneous stochastic dynamical systems,
which have wide applications in engineering mechanics, such as
oscillators under parametric excitations of noises. Before the al-
gorithm is applied, conditions �3.8� �for system �3.4��, �3.12�, and
�3.13�, or �3.14� �for system �1.1�� should be satisfied.

1http://www.mpiweb.org.
2http://www.openmp.org.
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According to the definition of Lie algebra, LA�gi� is actually
a vector space generated by the set of vectors gi, thus
dim LA�gi��s� can be determined by the dimension of this vector
space. It turns out that condition �3.8� is satisfied, provided that
the space spanned by vectors �gi :0 ir� has dimension d since
s�PJd−1. For system �1.1�, condition �3.13� is satisfied for the
special case �3�

A��� = �
0 1 0 ¯ 0

0 0 1 ¯ 0

] ]

0 0 0 ¯ 1

a1��� a2��� a3��� ¯ ad���
�

In particular, when d=2 and a2��� is constant, i.e.,

A���t�� = 	 0 1

− f���t�� − �



system �1.1� becomes

q̈�t� + �q̇�t� + f���t��q�t� = 0 �5.1�

which describes the motion of a damped oscillator under noise
perturbation. When f��� is not a constant function, the vectors
g�A��� ,s� are not in the same direction for different values of �.
Thus it can be easily verified that condition �3.13� is true.

It is stated in Ref. �3� that most systems considered in physics
and engineering satisfy the required conditions to ensure the ex-
istence of the moment Lyapunov exponents and the asymptotic
normality of logarithm of norm. This means that the algorithm in
Sec. 4 can be applied directly in most cases, and the asymptotic
normality of the logarithm of norm may be verified through the
histogram estimation obtained in simulation.

In this section, moment Lyapunov exponents of three single
degree-of-freedom systems under white noise, real noise, and
bounded noise excitations, respectively, are determined. The nu-
merical results of simulation are compared with known approxi-
mate analytical results.

5.1 An Oscillator Under Weak White Noise Excitation.
Consider the following two-dimensional oscillator under the exci-
tation of white noises:

q̈�t� + �2�� + �1/2	2�2�t��q̇�t� + �2�1 + �1/2	1�1�t��q�t� = 0

�5.2�

where �1�t� and �2�t� are the unit Gaussian white noise processes,
and 0���1 is a small parameter. Approximate moment
Lyapunov exponents can be obtained by the method of perturba-
tion �7,5�, which is given by

��p� = �p�− � +
p + 2

16
�2	1

2 +
3p + 2

16
	2

2� + O��3� �5.3�

Equation �5.2� can be converted to the Itô differential equations

d�x1

x2
 = � 0 1

− �2 − ��2� −
1

2
	2

2� ��x1

x2
dt + 	 0 0

− �1/2�2	1 0



��x1

x2
dW1�t� + 	0 0

0 − �1/2	2

�x1

x2
dW2�t� �5.4�

where x1�t�=q�t� and x2�t�= q̇�t�. It is obvious that system �5.4� is
of the form �3.4� with d=2, r=2, and

B0 = � 0 1

− �2 − ��2� −
1

2
	2

2� �, B1 = 	 0 0

− �1/2�2	1 0

,

B2 = 	0 0

0 − �1/2	2



It can be verified that the set of vectors �g0 ,g1 ,g2� spans a space
with dimension 2 since all gi, i=0, 1, 2, are two-dimensional
vectors. Thus condition �3.8� is satisfied and the algorithm pre-
sented in Sec. 4 can be applied to simulate the moment Lyapunov
exponents.

The explicit Euler scheme is applied for the simulation

x1
k+1 = x1

k + x2
k · h

x2
k+1 = x2

k + 	− �2x1
k − ��2� −

1

2
	2

2�x2
k
 · h − �1/2�2	1x1

k · �W1
k

− �1/2	2 · �W2
k

The damping coefficient is set to �=0 and �=1. The sample size
is N=10,000, time step h=0.0001, and the number of iterations is
MK=5�107, i.e., the total length of time of simulation is T
=5000.

Figures 3 and 4 show the comparison of approximate analytical
moment Lyapunov exponents given by Eq. �5.3� and the Monte
Carlo simulation results for different values of 	1, 	2, and �. It
can be seen that the approximate analytical results fit rather well
with the simulation results in most cases, implying that the algo-
rithm in Sec. 4 works well as predicted.

To illustrate the asymptotic normality of logarithm of norm, the
normalized histograms of log�x�T�� for some typical values of 	1
and 	2 are plotted in Fig. 5. The corresponding normal density
approximations given by

�̄�x� =
1

�2�	̄T
h
exp	−

�x − �̄T
h�2

2�	̄T
h�2 
 �5.5�

are also shown in the same figure for comparison. It appears that,
as the time of simulation T is large enough, the distribution of
log�x�T�� does approach normal distribution.

5.2 An Oscillator Under Real Noise Excitation. Consider an
oscillator under the excitation of real noise or Ornstein–
Uhlenbeck process ��t�,

q̈�t� + 2��q̇�t� + �2�1 − �1/2��t��q�t� = 0

Fig. 3 Moment Lyapunov exponents under white noise excita-
tion „ε=0.1…
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d��t� = − ���t�dt + 	dW�t� �5.6�
Xie �10,5� determined the approximate moment Lyapunov expo-
nents using the method of perturbation as

��p� = − �p� + p�p + 2�	�
	2�2

16��2 + 4�2�

+ �2 ��4 + 22�2�2 + 48�4�	4�4

32���2 + �2���2 + 4�2�3 
 + O��3� �5.7�

Obviously, the first equation in Eq. �5.6� takes the form of Eq.
�5.1� with f�x�=�2−�1/2�2x. And the real noise ��t� satisfies con-
dition �3.12�. Therefore, the algorithm in Sec. 4 can be applied.

Letting

x1�t� = q�t�, x2�t� = q̇�t�, x3�t� = ��t� �5.8�

system �5.6� can be converted to the Itô differential equations

d�x1

x2

x3
� = � x2

− �2x1 − 2��x2 + �1/2�2x3x1

− �x3
�dt + �0

0

	
�dW�t�

The iteration equations using explicit Euler scheme are then given
by

x1
k+1 = x1

k + x2
k · h

x2
k+1 = x2

k + �− �2x1
k − 2��x2

k + �1/2�2x3
kx1

k� · h

x3
k+1 = x3

k − �x3
k · h + 	 · �Wk

The norm for evaluating the moment Lyapunov exponents is
�q�t��= �x1

2+x2
2�1/2. The sample size for estimating the expected

value is N=20,000, time step h=0.0001, and the total length of
time of simulation is T=5000, i.e., the number of iterations is
MK=5�107.

Figures 6 and 7 show the typical results of the moment
Lyapunov exponents for different values of � and 	, with the
parameters taken as �=0.1, �=0.05, and �=1. It can be seen that
when 	 is small, i.e., the noise intensity is weak, and for different
values of �, the approximate results from the perturbation method
agree well with the simulation results. This is reasonable since the
analytical approximations are obtained by weak noise expansion
of eigenvalue problem governing the moment Lyapunov expo-
nents.

Fig. 4 Moment Lyapunov exponents under white noise excita-
tion „ε=0.5…

Fig. 5 Histograms of logarithm of norm compared with normal density approximations
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5.3 An Oscillator Under Bounded Noise Excitation. Con-
sider an oscillator under the excitation of bounded noise,

q̈�t� + 2��q̇�t� + �2�1 − �� cos ��t��q�t� = 0

d��t� = �dt + �1/2	dW�t� �5.9�
Xie �11,5� determined the approximate moment Lyapunov expo-
nents using the method of perturbation as

��p� = − �p� +
�3p�p + 2��4�2	2��2 + 4��2 − �2�2� + 1

4�2	4�
32��2 − �2�2���2��2 − �2�2 + ��2 + 1

4�2	4���2��2 − �2�2 − ��2 + 1
4�2	4� + o��3� �5.10�

Similar to the real noise case, condition �3.13� is satisfied with
f�x�=�2−���2x in the form of Eq. �5.1�. The bounded noise
��t�=cos ��t� satisfies condition �3.12� since one has the Stra-
tonovich stochastic differential equation

d��t� = − ��1 − �2dt − 	�1 − �2 � dW�t�
Using the same notation as Eq. �5.8�, the Itô differential equa-

tions for system �5.9� become

d�x1

x2

x3
� = � x2

− �2x1 − 2��x2 + ��2�x1 cos x3

�
�dt + � 0

0

�1/2	
�dW�t�

The iteration equations using explicit Euler scheme are then given
by

x1
k+1 = x1

k + x2
k · h

Fig. 8 Moment Lyapunov exponents under bounded noise ex-
citation for different �

Fig. 9 Moment Lyapunov exponents under bounded noise ex-
citation for different �

Fig. 6 Moment Lyapunov exponents under real noise excita-
tion for different � Fig. 7 Moment Lyapunov exponents under real noise excita-

tion for different �
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x2
k+1 = x2

k + �− �2x1
k − 2��x2

k + ��2�x1
k cos x3

k� · h

x3
k+1 = x3

k + � · h + �1/2	 · �Wk

The norm for evaluating the moment Lyapunov exponents is
�q�t��= �x1

2+x2
2�1/2. The sample size for estimating the expected

value is N=20,000, time step h=0.0001, and the total length of
time of simulation is T=5000, i.e., the number of iterations is
MK=5�107.

Typical results of the moment Lyapunov exponents for different
values of 	 and � are shown in Figs. 8 and 9, with the parameters
taken as �=0.1, �=0.05, �=1, and �=2. It can be seen that the
approximate results from perturbation method agree well with the
simulation results for small � and large 	. This is the result that,
in the eigenvalue problem governing the moment Lyapunov ex-
ponents, the approximate analysis using perturbation method re-
quires �� be small enough and �	2 be in the order O�1�. The
discrepancy between perturbation and simulation for small 	 and
relatively large � shows that some better approximation methods
have to be considered.

The histograms of log�q�T�� for different values of � and 	 are
plotted in Fig. 10. Again, the figure shows the asymptotic normal-
ity of log�q�T��.

6 Conclusion
Contrary to intuition, Monte Carlo simulation of moment

Lyapunov exponents of stochastic dynamical systems is a very
difficult topic. Because the solution of a system grows exponen-
tially when it is unstable and decays exponentially when it is
stable, float-point overflow or underflow renders “brute-force” ap-
proaches inapplicable. Furthermore, because the variance of the
solution may grow with time, it is very challenging to obtain an
accurate estimation of the moments with finite sample size.

For linear homogeneous stochastic dynamical systems, a Monte
Carlo simulation algorithm used to determine the moment
Lyapunov exponents is presented in this paper. Since the limit
distribution of the logarithm of norm of the solution is normal, the
mean value and variance of the logarithm of norm, combined with

normalization of the solution, are used to reduce the possible large
variance of the solution so that the pth moment can be estimated.
Numerical examples are presented to compare the Monte Carlo
simulation results with approximate analytical results. This ap-
proach gives a better numerical approximation than the previous
method �14�, which uses the direct sample average of norm as the
estimation of expectation.
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Marginal Instability and
Intermittency in Stochastic
Systems—Part II: Systems With
Rapid Random Variations in
Parameters
Dynamic systems with lumped parameters, which experience random temporal varia-
tions, are considered. The variations “smear” the boundary between the system’s states,
which are dynamically stable and unstable in the classical sense. The system’s response
within such a “twilight zone” of marginal instability is found to be of an intermittent
nature, with alternating periods of zero (or almost-zero) response and rare short out-
breaks. As long as it may be impractical to preclude completely such outbreaks for a
designed system, subject to highly uncertain dynamic loads, the corresponding system’s
response should be analyzed. Results of such analyses are presented for cases of slow and
rapid (broadband) parameter variations in Papers I and II, respectively. The former case
has been studied in Paper I (2008, “Marginal Instability and Intermittency in Stochastic
Systems—Part I: Systems With Slow Random Variations of Parameters,” ASME J. Appl.
Mech., 75(4), pp. 041002) for a linear model of the system using a parabolic approxi-
mation for the variations in the vicinity of their peaks (so-called Slepian model) together
with Krylov–Bogoliubov averaging for the transient response. This resulted in a solution
for the probability density function (PDF) of the response, which was of an intermittent
nature indeed due to the specific algorithm of its generation. In the present paper (Paper
II), rapid broadband parameter variations are considered, which can be described by the
theory of Markov processes. The system is assumed to operate beyond its stochastic
instability threshold—although only slightly—and its nonlinear model is used accord-
ingly. The analysis is based on the solution of the Fokker–Planck–Kolmogorov partial
differential equation for the relevant stationary PDF of the response. Several such PDFs
are analyzed; they are found to have integrable singularities at the origin, indicating an
intermittent nature of the response. Asymptotic analysis is performed for the first-passage
problem for such response processes with highly singular PDFs, resulting in explicit
formulas for an expected time interval between outbreaks in the intermittent response.
�DOI: 10.1115/1.3086593�

1 Introduction
Classical definitions of stability and instability deal with long-

term behavior of dynamic systems, that is, behavior at t→�.
These definitions are quite adequate for numerous engineering
applications where the long-term operation of the systems is in-
deed required. However, they may become not perfectly appropri-
ate for applications with limited service life, such as missiles and
projectiles. In such applications a system may sometimes be quali-
fied as acceptable in spite of being unstable in the classical sense
as long as its deviations from the design state are small enough for
a successful and safe operation. Thus design of such marginally
unstable systems may be based on the analysis of their transient
response within a limited service life.

The classical definitions of stability and instability may also
prove to be not perfectly adequate for another class of dynamic
systems—those that may be intended for long-term operation.
Such systems are designed, as a rule, to operate within their sta-
bility domain in the classical sense as long as the “nominal” de-
sign parameters are considered. However, if the system’s param-

eters may experience random temporal variations around their
nominal or expected values, the system may become “temporarily
unstable.” Occasionally, this may happen whenever the �“classi-
cal”� instability boundary is crossed. Whenever a complete elimi-
nation of such excursions of the system out of its stability domain
may lead to impossible or impractical design, the corresponding
short-time outbreaks in response should be analyzed to evaluate
the system’s reliability.

The resulting dynamic response of a system may be expected to
be of an intermittent nature whereby relatively long periods of
zero or almost-zero responses alternate with relatively rare spon-
taneous short-period high-level outbreaks. The name “intermit-
tency” is used in fluid mechanics for transitional regimes between
laminar and turbulent flows. The complete transition usually re-
quires a finite change in the basic control parameter, such as the
Reynolds number, and within the transitional range sporadic alter-
nations, or on/off switching, between laminar and turbulent flow
patterns can be observed. More recently the name was applied, by
analogy, to dynamic systems with lumped parameters that exhibit
the potential for such a “noninstantaneous” transition to chaos—
with sporadic outbreaks in chaotic response within the transitional
zone and zero or almost-zero response between the outbreaks; for
an extensive survey of the topic, see Ref. �1�.

In this paper analytical studies are presented for intermittency
in systems with lumped parameters subject to externally imposed
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JOURNAL OF APPLIED MECHANICS. Manuscript received January 8, 2007; final manu-
script received October 8, 2008; published online March 5, 2009. Review conducted
by Igor Mezic.

Journal of Applied Mechanics MAY 2009, Vol. 76 / 031002-1Copyright © 2009 by ASME

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



random variations in parameters. These variations may “smear”
the stability boundary of a given system, that is, expand it into the
transitional zone; the system may then become marginally un-
stable in the classical sense. Within such a zone, spontaneous
high-level and relatively rare outbreaks alternate with periods of
almost-zero response. This behavior of the response may also be
qualified as being intermittent indeed. Its analysis may be of im-
portance for engineering as long as it may be impractical for some
applications to completely preclude the system’s operation within
the transitional zone; this may be the case, for example, with a
structure subject to wind loads due to hurricanes and/or wave
loads in severe storms. Thus, problems of first-passage failure
and/or of low-cycle fatigue may be of concern for a system oper-
ating within the transitional state. These problems can be treated
by existing methods for an analysis of random vibrations, which
provide the possibility for estimating the system’s reliability in the
design analysis. Furthermore, relevant dynamic studies may also
be of importance for the interpretation of test results for a ma-
chine or structure where intermittent behavior of the response is
observed.

This paper presents results of such dynamic response analyses
for two distinctly different mechanisms for generating response in
systems with randomly varying parameters; in both cases, how-
ever, the response is manifestly intermittent. In Paper I �2� cases
of slow parameter variations �compared with the system’s lowest
natural frequency� have been considered, with the nominal or ex-
pected state of the system being stable. Thus, spontaneous out-
breaks in response were assumed to be essentially due to tempo-
rary excursions of the system’s parameters into the instability
domain. Response PDF analysis has been made using a parabolic
approximation for parameter variations in the vicinities of peaks
together with Krylov–Bogoliubov �KB�-averaging, which resulted
in a solution for the transient response for linear models of the
systems involved.

In the present Paper II, systems with “rapid” stationary random
temporal variations in parameters are studied. The name is used
for variations that are broadband with respect to the system or
may even be approximated by white noises. These systems may
be described by the theory of Markov processes �3–5�, and they
have clearly defined boundaries corresponding to various defini-
tions of stochastic stability for the system’s linear part �4�. The
systems with such parameter variations operate within the domain
of stochastic instability but very close to the corresponding insta-
bility threshold; this may happen in mechanical engineering be-
cause of high uncertainty of predictions for stochastic instability,
whereas such a situation may be essentially natural in other appli-
cations, e.g., in population dynamics. The response is found to be
of the intermittent nature indeed in such cases. It is clear that
adequate modeling for this kind of steady-state response requires
the system’s nonlinearity to be accounted for. And the analysis
provides the potential for predicting the response PDFs through
the solution of the stationary Fokker–Planck–Kolmogorov �FPK�
partial differential equation �3–5�. Several such stationary PDFs
are analyzed; all of them are found to possess an integrable sin-
gularity at the origin, whereas the response itself does exhibit the
intermittency indeed. Common characteristic features of these so-
lutions are also certain other typical patterns of a stationary inter-
mittent response; for example, if A�t� with mean �A� and standard
deviation �A �where angular brackets denote probabilistic averag-
ing� denotes the amplitude process, then typically a small relative
stay time of A�t� above �A� is observed, and also the inequality
�A� �A�. Asymptotic analysis is also performed for the first-
passage problem for certain response processes with highly singu-
lar PDFs. This analysis provides explicit formulas for an expected
time interval between outbreaks in the intermittent response.

2 Quasilinear Systems With Nonlinear Damping
The equation of motion for the single degree-of-freedom

�SDOF� system to be studied may be written as

Ẍ + h�X,Ẋ� + �2X�1 + ��t�� = 0 �1�

where ��t� is a stationary zero-mean broadband random process
with power spectral density �PSD� ������. The latter is assumed
to be proportional to a small parameter �, and the same assump-
tion is adopted for the nonlinear damping function h. Therefore
the response X�t� should be narrow-band, and its slowly varying

amplitude A�t� may be introduced as X=A sin 	, Ẋ=�A cos 	, 	
=�t+
. This amplitude satisfies the following “shortened” first-
order stochastic differential equation �SDE� as obtained by the
asymptotic method of stochastic averaging �3–5�:

Ȧ = − �−1h1�A� + 3B�A − A�2B��̄�t� where B�

= ���2/8� · ����2�� and h1�A�

= �2��−1�
0

2�

h�A sin 	,�A cos 	�cos 	d	 �2�

Here �̄�t� is an “equivalent” standard zero-mean Gaussian white
noise of unit intensity.

The FPK equation for the PDF p�A� of the amplitude A�t� as
governed by the first-order SDE �Eq. �2�� is an ordinary differen-
tial equation �ODE� rather than a PDE, and it has the following
steady-state solution:

p�A� = 2CA exp	−�
0

A

�h1�z�/�B�z
2�dz
 �3a�

where C is a normalization constant. For the case of smooth
h1�A�, with h1�0��0, this solution may have a singularity at its
origin A=0. In particular, for the special case of a cubic damping

nonlinearity where h�X , Ẋ�=2�Ẋ+81X2Ẋ and �−1h1�A�=�A
+1A3, the PDF �Eq. �3a�� is reduced, after imposing the relevant
normalization condition, to the following form as obtained origi-
nally in Ref. �3�:

p�A� = 21−�A1−2� exp�− A2�/��1 − �� where � = �/2B�, 

= 1/2B� �3b�

Here � is a gamma-function. This PDF leads to the gamma-
distribution for the scaled squared amplitude v=V=A2. In par-
ticular, its PDF becomes

w�v� = v−� exp�− v�/��1 − �� �4�

with mean value and standard deviation mv=1−� and �v= �1
−��1/2, respectively. Both PDFs �3b� and �4� have singularities at
their origins as long as the damping coefficient � is positive. They
do exist only if these singularities are integrable, that is, if ��1;
this condition for integrability of the PDFs is known to be the
same as that for stochastic instability in the probability of the
linear part of system �1�: zero response is stable if ��1.

The PDF �3b� with an integrable singularity has been obtained
as far back as in the late 1950s �3�, with the name “undeveloped
oscillations” being used to discriminate the corresponding re-
sponse from that in the case of self-excited oscillations in a sys-
tem with negative �. However, a clear connection between the
intermittent pattern of the response itself and the singularity in its
PDF by direct numerical simulation was established only much
later �6�. A relative stay time of a stationary gamma-distributed
process v�t� above its mean level has been suggested in Ref. �5� as
a useful index of intermittency, which may be estimated in terms
of its PDF as
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�v =
Prob�v � mv�
Prob�v � mv�

=

�
mv

�

w�v�dv

�
0

mv

w�v�dv

=
��1 − �,1 − ��

��1 − �� − ��1 − �,1 − ��

�5�

Here the function ��· , ·�, which depends on two arguments, is the
incomplete gamma-function, and in view of its properties one may
indeed regard a small value of the ratio �v as an index for inter-
mittency as long as �v→0 with 1−�→0. Yet another index for
intermittency is a large value of the ratio �v /mv, which equals
�1−��−1/2 for the process with PDF �4�. Indeed, as long as v�t� is
ergodic, one may write

mv = lim
T→�

1

T�0

T

v�t�dt and �v
2 = lim

T→�

1

T�0

T

�v�t� − mv�2dt

For intermittent v�t� a significant contribution to both integrals is
provided by integration within the restricted time intervals of re-
sponse outbreaks with their total duration being Tout, and as long
as v2�t� and v�t� are finite the ratio �v /mv should indeed be pro-
portional to �T for fixed Tout.

Besides the one-dimensional PDF, it may also be of interest to
predict the mean or expected time between “outbreaks” of the
intermittent process. The relevant analysis may be based on the
solution to the first-passage problem for T�V�—the expected time
until the first passage of a given barrier V�, starting from an initial
value V�V�, where V=A2 and A�t� are governed by the SDE �2�.
The solution for T�A�, based on the theory of the backward Kol-
mogorov equation, is presented in the Solution Manual for the
book �4�; it may be rewritten as

T�V� = �1/4B���
V

V�

z�−2ezI�z�dz

�6�

I�z� =�
0

z

z�−�e−z�dz� =
1

1−��
0

z̃

z̃�−�e−z̃�dz̃� =
1

1−���1 − �, z̃�

where ��1−� ,x�=��1−��−��1−� ,x�.
Now, for small 1−� �case of intermittency� the approximation

��1−� , z̃�� z̃1−� / �1−�� can be used in Eq. �6� �7,8�. Then

�T�v� �
1

2
·

�

1 − �
�

v

v� ez

z
dz =

1

2
��/�1 − ����Ei�v�� − Ei�v��, v

= V, v� = V� �7�

where Ei is the exponential integral function. This solution may
be used to calculate the expected time interval between outbreaks
as long as the definition of “outbreak” is introduced, say, as that of
upcrossing a certain given level V�=��V� by V�t� �choice of the
nondimensional coefficient � is application dependent�.

The function T�V� �Eq. �7�� may now be averaged over the
stationary PDF �4� of V�t�, as suggested in Ref. �3�, to estimate the
mean or expected period between “clusters of level crossings.”
Using the adopted threshold for outbreaks in V�t�, that is, V�

=��V�=��1−��, and applying the approximation Ei�x���
+ln x+x �where �=0.5772. . . is Euler’s constant� for small values
of the argument of Ei �7,8� yields

��T�� = ��
0

��v�

T�v�w�v�dv

=
�

2�1 − ����1 − ���
0

��1−��

v−�e−v�Ei�1 − �� − Ei�v��dv

�
�

2��2 − ���
0

��1−��

v−�e−v · �ln��1 − ��/v� + 1 − � − v�dv

�
�1−���1 − ��1−�

2��2 − ��
· 	 1

2 − �
+

1

�1 − ��2

�

�1−��

2�1 − ��1+���2 − ��
�

�1−�

2�1 − ��1+� �8�

The last row in Eq. �8� is based on the approximation exp�−v�
�1 for v� �0,1−�� and small 1−� in the integrand. This esti-
mate for the expected time for response outbreak is seen to be
independent of the system’s nonlinearity.

An extensive Monte Carlo simulation study has been performed
to verify the theoretical solutions �4� and �8� for the PDF w�v� and
the expected period between outbreaks, respectively. The response
of system �1� has been simulated numerically for �=2 and �
=0.01, whereas ��t� was generated as a stationary zero-mean
broadband random process with constant power spectral density
������ within a frequency range of ��8�. Values of ������
were adjusted to assign various values for � between 0.80 and
0.95. To test the insensitivity of the results to the system’s nonlin-
earity, three different values of 1 were considered in the numeri-
cal simulation, namely, 0.05, 0.02, and 0.005. Most of the simu-
lations were conducted for a time interval equal to about 300,000
natural periods of the corresponding linear system, which con-
tained about a thousand response outbreaks if ��0.9. A short
sample of x�t� that illustrates the response outbreaks is shown in
Fig. 1�a�.

Due to the limited accuracy of the numerical integration, it was
expected that computational noise may affect the PDF of the
scaled amplitude v for very small values of v, thereby influencing
the estimate of the expected period between outbreaks. This is
illustrated in Fig. 1�b� where the theoretical solution �4� for the
PDF w�v� is compared with the computed PDF of the simulated
response for �=0.82. The PDF of the simulated response seems to
follow closely the theoretical curve down to a rather small value
v=4�10−8. This level of accuracy seems to be adequate for some
applications—such as for predicting fatigue life, especially with
nonzero endurance limit. However, as will be seen from the fol-
lowing, the discrepancies between the theoretical and simulated
w�v� at small v’s may strongly influence the estimate of the period
between outbreaks when used in the integrand in Eq. �8�.

After extensive numerical simulations, it was found that for �
�0.9, w�v� can be approximated as uniform within the range of
v� �v0 ,v1� and zero for v�v0. In this paper the corrected formula
for the PDF of the scaled squared amplitude is suggested as

wC�v� =  Cv−� exp�− v�/��1 − �� , v � v1

Cv1
−� exp�− v1�/��1 − �� , v � �v0,v1�

0, v � v0
� �4��

Here C is a normalization constant, whereas the two new param-
eters v0 and v1 depend on � in general. Thus, for the “measured”
PDF shown in Fig. 1�b�, v0=1�10−12 and v1=4�10−8. To in-
crease the accuracy of the predicted �T�, expression �8� can be
corrected using the measured PDF of v. In practical applications,
this can be obtained from previous monitoring data if the environ-
mental conditions are stationary, and anyway, numerical estimates
for the response PDF may usually require less effort than those for
the period between outbreaks.
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Figure 1�c� compares three estimates of the expected period
between outbreaks �T���T��=1: theoretical Eq. �8� as based on
solution �4� for w�v�, adjusted Eq. �8� with the integral calculated
using the corrected w�v� �Eq. �4���, and numerical simulation. The
correction of the PDF w�v� is seen to reduce the expected time
between outbreaks. The simulation results are close to those ob-
tained by the corrected formula as long as the system is relatively
deep within the instability domain although it still exhibits some
intermittency, i.e., ��0.9. For ��0.9, the contribution of very
small values of the response, of the order of numerical accuracy,
into the system’s behavior is significant, which explains the dif-
ference between simulation results and theory. Furthermore, addi-
tional simulations for different values of 1 have confirmed that
the expected time for response outbreak is independent of the
system’s nonlinearity, as implied by Eq. �8�.

Concluding this section we may claim acceptable accuracy of
the adjusted theoretical Eq. �8� for �T� as based on the use of the
corrected PDF w�v� in the integrand for ��0.9. Cases with �
�0.9 would require longer samples of x�t� with adequate accu-
racy to estimate both w�v� and �T�. Furthermore, some convention
is needed to handle “irregular” cycles of x�t�—i.e., those with
negative peaks and/or positive troughs—which may lead to ambi-
guity in evaluating �T�.

3 Vibroimpact System With One-Sided Barrier
Consider now a system with a quite different type of nonlinear

damping, which may effectively restrict response growth in case
of stochastic instability. This is a single-barrier SDOF vibroimpact
system with inelastic impacts as governed by the equation of mo-
tion for its displacement Y�t�,

Ÿ + 2�Ẏ + �2Y�1 + ��t�� = 0 for Y � − h �9�

and the impact condition at the barrier at Y =−h,

Ẏ+ = − rẎ− where Ẏ� = Ẏ�t� � 0�, Y�t�� = − h, and 0 � r � 1

�10�

Here r is a restitution factor, whereas ��t� is a stationary zero-
mean Gaussian white noise with intensity D�=2����=16B� /�2.
The latter is assumed to be proportional to a small parameter, and
so are the damping parameters � and 1−r. The system �9�, �10�
has been analyzed using these assumptions in Ref. �9� �see also
Ref. �5�� by a quasiconservative version of the stochastic averag-

ing method �4,5�. The total response energy H�t�= 1
2 �Ẋ2+�2X2�

was introduced accordingly, and the right hand side of the result-
ing first-order SDE for H�t� was averaged over the �energy-
dependent� natural period of system �9�, �10� with �=0. The sta-
tionary PDF of energy p�H� was then derived as the solution to
the corresponding FPK equation. We shall not consider this PDF
in detail here since for the present purpose it is sufficient to note
that it does exist �is normable� if and only if ��1 and ��1
−r� /��� �1−�� /� �5�. The first of these conditions is the same as
for system �1�, whereas the second one guarantees convergence of
the normalization integral of p�H� at infinity so that the impact
losses are sufficient for restricting response growth in the stochas-
tically unstable system.

Both the SDE for H�t� and the solution to the corresponding
FPK equation for p�H� are described by different analytical ex-
pressions for H�Hh and for H�Hh, where Hh=�2h2 /2 is the
system’s potential energy at the barrier �5,9�. The first of the ex-
pressions for the PDF of energy is p�H�=C1H−� for H�Hh, that
is, for motions without impacts. It may be regarded as the condi-
tional PDF pc�H�= p�H �H�Hh� if normalized within �0,Hh� �the
condition being H�Hh�. Imposing this condition yields

Fig. 1 „a… A short sample of response x„t… illustrating the re-
sponse outbreaks. System parameters are Ω=2, �=0.01, �1
=0.02, and �=0.82. „b… PDF of v, w„v…, predicted by theory „Eq.
„4…… and calculated from simulation data „�=0.82,�1=0.02…. To
emphasize the difference between the two plots, only the PDF
for v« †1Ã10−4,1Ã102

‡ has been used in the normalization of
the results obtained from simulation data. „c… Expected period
between outbreaks as shown by Eq. „8…, Eq. „8… with correction
for w„v…, and numerical simulation. The errors between numeri-
cal simulation and predicted results using the corrected PDF of
v are 5% „�=0.8…, 11% „�=0.82…, 23% „�=0.85…, and 50% „�
=0.90…. �1=0.02.
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pc�H� = ��1 − ��/Hh��H/Hh�−� �11�
The �conditional� mean and relative stay time above this mean of
the response energy may be found from Eq. �11� as

�H� = Hh�
0

1

�1 − ��H̄−�dH̄ = Hh��1 − ��/�2 − ���, H̄ = H/Hh

�H =

�
�H�

Hh

pc�H�dH

�
0

�H�

pc�H�dH

= �2 − �

1 − �
�1−�

− 1 �12�

The expression for �H clearly indicates that the response should
be intermittent indeed for small 1−�.

Consider now the expected time T�H� for reaching a given
energy barrier H� “from below,” which is from an initial state with
energy H�H�. It is obvious that formula �6� with =0 �and the
first expression for I�z�� should be directly applicable as long as
H=�2V /2 provided H��Hh so that the system remains linear.
Thus

T�H� =
1

4B�
�

H

H�

z�−2dz�
0

z

z�−�dz� so that �T�H�

=
1

2
·

�

1 − �
· ln�H�

H
� �13�

And now, similar to the derivation of Eq. �8� we average this
expression over H using the conditional PDF �11� and substituting
the selected fraction of the conditional mean �H� for the threshold
H�, that is, H�=��H�. Thus

��T�� = ��
0

��H�

T�H�pc�H�dH = −
1

2
����H�

Hh
�1−��

0

1

y−� ln ydy

= ��/2��1−��1 − ��−�1+���2 − ��−�1−�� �14�
This estimate for the expected period between outbreaks is once
again seen to be independent of the system’s nonlinearity; more-
over, up to higher-order terms in 1−�, it coincides with the similar
estimate �Eq. �8�� for the quasilinear system.

4 Vibroimpact System With Double-Sided Barrier
The next case of intermittency is considered for the system with

linear damping but with a special type of nonlinearity in the re-
storing force that may provide a restriction of response growth for
the case of stochastic instability. The equation of motion between
impacts is

Ÿ + 2�Ẏ�1 + ��t�� + �2Y�1 + ��t�� = 0 for − h � Y � h

�15�

where ��t� and ��t� are stationary zero-mean independent Gauss-
ian white noises with intensities D� and D�= �2� /��2D�, respec-
tively. Impact condition �10� with r=1 �elastic impact� is now
imposed both at Y =−h and at Y = +h. Under the above relation
between intensities of excitations, the FPK equation for the joint
PDF of response displacement and velocity has an exact station-
ary solution �10�,

w�y, ẏ� = C/�y2 + ẏ2/�2�� where � = 2�/D��
2 + 1/2 �16�

where C is a normalization constant. It can be clearly seen that in
the absence of barriers the stationary PDF �16� cannot exist since
the normalization integral within the whole plane �y , ẏ� diverges
at infinity in the present case of a linear system, which is stochas-
tically unstable in probability if ��1. However, the nonlinearity
due to the double-sided barrier may provide restriction for the

response growth even in the absence of nonlinear damping—just
through bounds on the apparent level of random parametric exci-
tation as imposed by the barrier. Specifically, if 1

2 ���1, then the
PDF �16� is normalizable indeed and integration over ẏ provides
the PDF p�y� of the displacement,

p�y� =�
−�

�
Cdv

�y2 + v2/�2�� =
1 − �

h�y/h�2�−1 for − h � y � h

C =
�1 − ������

��� ·��� − 1/2�h2�1−��
�17�

�Tables �8� were used, and the result is then normalized within
�−h /2,h /2�.� The singularity at the origin in this PDF is seen to
be integrable as long as ��1 /2.

We may consider relative stay time ��Y� of the magnitude of Y�t�
above its mean level as an index of intermittency. Thus

��Y�� = 2�
0

h

yp�y�dy =
2�1 − ��
3 − 2�

· h, P = Prob�Y � �Y��

= 2�
0

��Y��

p�y�dy = �2�1 − ��/�3 − 2���2�1−��

and ��Y� = �1 − P�/P �18�

This index of intermittency is once again seen to approach zero
with 1−�→0.

Solutions �16� and �17� may be used to calculate the probability
for staying in the nonimpact regime by integrating it in polar
coordinates within a circle in the plane �y , ẏ�. Thus

Pnonimp = C��
0

2�

d	�
0

h

�−2��d� =
������

��� − 1/2�
�19�

This probability is found to be close to unity for small 1−�.

5 Lotka–Volterra System in Random Environment
Random oscillations are considered for the following stochastic

Lotka–Volterra �LV� model �5,11,12�:

u̇ = − mu + kuv, v̇ = �v�1 + ��t�� − uv − �v2, ���t��

= 0, ���t���t + ��� = D���� �20�
with one of the potential applications being a pair of interacting
populations of the predator-prey or parasite-host type. In this case
u�t� and v�t� are population sizes of predators �or parasites� and
preys �or hosts�, respectively, whereas ��t� is a zero-mean Gauss-
ian random white noise in the Stratonovich sense with intensity D
and � is the Dirac delta-function; all coefficients in the SDE �20�
are positive. The special case �=0, ��t��0 corresponds to the
classical LV model with its singular point u=� /, v=m /k �12�.
This classical model can describe periodic oscillations in popula-
tion sizes, which are sometimes observed in nature; however, be-
ing conservative it cannot “withstand” random environmental
variations �5,11,12�. Thus, to study its steady-state random re-
sponse some kind of “damping” should be accounted for. Such a
damping is provided by the interspecies competition term �v2 in
the second SDE in Eq. �20�. Upon addition of this term, the stable
equilibrium point shifts to u0= ��−�m /k� /, v0=m /k and be-
comes asymptotically stable �either focus or node�, whereas an
additional equilibrium state appears at u�=0, v�=� /�. The latter
is unstable if vo�v� or ����=�k /m. At the bifurcation point
�=��, these two equilibrium states merge, with the state u�=0,
v�=� /� becoming stable for ����. The physical meaning of
these transformations is clear: beyond this transcritical bifurcation
point growth of the prey, population is bounded by its interspecies
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competition rather than by the activity of predators, and the latter
become extinct because of food shortage.

The random variations in the preys’ reproduction rate � simu-
late temporal variations in the environmental conditions. These
variations lead to random oscillations in the sizes of both popula-
tions, which can be analyzed by using the transformations x
=ln u, y=ln v. The SDE �20� is then reduced to the form

ẋ = − m + k exp y = �H/�y, ẏ = � −  exp x − � exp y + ���t�

= − �H/�x − g · ��H/�y� + ���t� �21�

where H�x ,y�=k exp y−my+ exp x− ��−�m /k�x and g
=� /k. The stationary �time-independent� joint PDF p�x ,y� of the
transformed random state variables x�t� and y�t� as governed by
the SDE �21�, has been obtained in Ref. �5� as the solution to the
corresponding FPK equation. Transformation to the original state
variables then provides the joint stationary PDF w�u ,v�, as de-
fined within the first quadrant of the �u ,v�-plane as a product of
the individual one-dimensional PDFs of the population sizes of
u�t� and v�t� �5,11�,

w�u,v� = p��u/k� · p��v� where p�z� = zzo−1e−z/��zo� and �

= 2�/D�2 �22�

Here the universal expression for the PDF p�z� of the gamma-
distribution is used with z=�u /k and z=�v for the stationary
PDFs of u�t� and v�t�, respectively, and zo=�uo /k and zo=�vo.
Thus, both steady-state population sizes u�t� and v�t� are indepen-
dent gamma-distributed random variables with the following
mean values and standard deviations:

�u� = u0 = �� − �m/k�/ = ��/��1 − vo/v��, �v� = v0 = m/k

�u = ���u − �u���2 = �uok/�, �v = ���v − �v���2=�vo/�
�23�

These PDFs both exist provided that ����. If ����, then the
PDF of the predators’ or the parasites’ population degenerates into
the Dirac delta-function, which implies extinction of predators
due to food shortage. It can be seen from relations �22� and �23�
and from previous analysis as presented in Sec. 2 that intermittent
behavior should be expected of v�t� �u�t�� whenever �v0
�1��u0 /k�1�, so that �v�vo��u�uo�, with rare and short
pulselike intensive outbreaks in v�t� �u�t�� and low-level oscilla-
tions between the pulses. Relevant indices of intermittency such
as small relative stay time above the mean �relation �5�� and large
value of the ratio � /m may also be used.

It may be convenient for applications to identify two different
types of intermittency. The first type is observed only for a popu-
lation of predators or parasites—when this population is close to
extinction, so that �u0 /k�1 due to small u0, whereas � is of the
order of unity. This type I of intermittency in the proximity of the
bifurcation point, i.e., for small 1−vo /v� is similar to those con-
sidered in Secs. 2–4 �for systems close to their instability bound-
aries�.

The other type of intermittency is observed in the case of high
intensity D of the environmental parameter variations, which lead
to a small value of �. It may be explained by the fact that the
natural period T�H� of the corresponding conservative �classical�
LV system—i.e., one with �=0, ��t��0—increases indefinitely
with H. If both � and D are proportional to a small parameter, this
case may also be analyzed by the quasiconservative version of the
stochastic averaging method for a more general version of the
SDEs �20�—if the product terms uv are replaced by a more so-
phisticated interaction law uV�v� �5�.

It goes without saying that actually either types or mechanisms
of intermittency may be involved for any given LV system. This is
particularly clear from an analysis of yet another index for the
on-off intermittency in the predator population—an expected

number n+�u� of upcrossings per unit time of a given arbitrary
level u by u�t� �crossings of the given level with positive deriva-
tive u̇�. Substituting Eq. �22�, together with the first relation in Eq.
�20�, into the basic relation �5� for upcrossings yields �5,11�

n+�u� =�
0

�

u̇w�u, u̇�du̇ =�
vo

�

ku�v − v0�w�u,v�dv = �k/��

���v0��vo��u/k��uo/k exp�− �v0 − �u/k�

�����v0����u0/k��−1 �24�

The latter formula provides just the expected circular frequency of
oscillations �in hertz� if upcrossings of the mean or expected level
�u=u0� are considered, whereas its reciprocal is the expected time
interval �T� between the upcrossings,

n+�u0� = n�f��v0�f��u0/k�, f�z� = ��2��1/2zz−1/2 exp�

− z��/��z� with f�z�
z→�

= 1

n� = lim
�→�

n+�u0� = �ku0v0�1/2/2�

= ���m/2�� · �1 − v0/v� and �T� = 1/�n+�u0�� �25�

Here n� can be clearly identified as the system’s “damped” natural
frequency of oscillations with small deviations in u�t� and v�t�
from their expected values. The first cofactor in expression �25�
for n� is the natural frequency of the corresponding conservative
or classical LV system �12�, whereas the second cofactor repre-
sents a decrease in the natural frequency and an increase in the
expected response period due to increasing interspecies competi-
tion �high ��. This second cofactor may be responsible for type I
intermittency. On the other hand, two cofactors containing the
function f describe the effect of an increased response period with
increasing intensity D of the environmental variations. They may
be responsible for type II intermittency with a high expected re-
sponse period for small � as long as f�z� decreases roughly as the
square root of z for small z.

Illustrations of both types of intermittency are shown in Fig. 2.
Samples of u�t� and v�t� are obtained by numerical simulation for
a system whose classical LV parameters are m=1, �=1, =1, and
�=1, whereas �=0.98 and D=1 in Fig. 2�a� and �=0.5 and D
=20 in Fig. 2�b�. Figure 2�a� illustrates intermittency of the first
type �u0=0.01,�=1.98� in the population size of predators, u�t�.
The second type of intermittency ��=0.05, u0=0.5, and v0=1� is
illustrated in Fig. 2�b�, where both population sizes, u�t� and v�t�,
display rear intensive outbreaks.

Finally, it may be of interest to note that formula �23� for the
mean values �u� and �v� and the standard deviation of v�t� may be
derived without using solution �22� to the FPK equation but rather
by direct application of the SDE calculus �method of moments� to
the SDEs �20� and �21�. As long as constant steady-state response
moments are sought, one may impose conditions of zero expecta-
tions of the right hand sides of these SDEs. Indeed, from Eq. �21�

�ey� = �v� = v0 = m/k and �ex� = �u� = � − ��ey� = � − ��v�

= � − �m/k = u0

Then, from Eq. �21� we obtain �uv�=m�u� /k= �u��v�=u0v0 and
finally

�v2� = ���v� + ��v · ��t�� − �uv��/� = v0
2

+ v0/� where ��v · ��t�� = 1
2�2D�v�

is a Wong–Zakai correction �4,5� to the second Stratonovich SDE
in Eq. �20�.

Further attempts to directly predict response moments face the
well-known closure problem for nonlinear systems �4,5�. On the
other hand, this approach may be of some use for general systems
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of the LV type with more than two interacting species �12� where
an analytical solution to the FPK equation may be unavailable.
The present solution for w�u ,v� may be helpful for evaluating the
accuracy of closure schemes for such cases. On the other hand,
Ref. �13� may be referred to here where rigorous theorems were
proved regarding moment hierarchy in a certain class of systems
with distributed parameters that lead to intermittency.

6 Conclusions
The concept of marginal instability has been introduced for

systems with random variations in parameters that may smear the
system’s boundary of dynamic instability. Operation of a system
within the corresponding “twilight zone” between domains of sta-
bility and “real” instability may require analysis of the corre-
sponding random response to evaluate the system’s reliability. Ap-
plication of relevant methods has been illustrated in this paper,
which resulted in procedures for predicting PDFs and expected

first-passage times of the response. Cases of slow and rapid ran-
dom variations in parameters have been considered separately in
Papers I �2� and II �this paper�, respectively, with drastically dif-
ferent models of the basic systems being used for these cases.

The linear systems with slowly varying parameters, as consid-
ered in Paper I, were operating within the stability domain of the
corresponding nominal system, i.e., one with mean or expected
values of parameters. Thus, relatively rare short-time outbreaks in
response were due to brief excursions into the instability domain.
Analysis of the corresponding intermittent response was based on
a parabolic approximation of parameter�s� in the vicinities of
peaks together with the KB-averaging. It resulted in solutions for
response PDFs, which may be important for predicting fatigue
damage accumulation, whereas the first-passage problem for the
response was reduced to that for the randomly varying param-
eter�s�.

In the present paper �Paper II� the rapid random temporal varia-
tions in parameter�s� have been considered as described in the
framework of the theory of Markov processes. The systems were
assumed to operate within the domain of their stochastic instabil-
ity, and nonlinear systems’ models were used accordingly. Re-
sponse PDFs were obtained as stationary solutions to the corre-
sponding FPK equations, and analyses of these solutions for the
case of operation in the vicinity of the stochastic instability
boundary were presented. All of the solutions were found to con-
tain an integrable singularity at the origin, indicating the intermit-
tent nature of the response. Other indices for intermittency were
also studied. Asymptotic analysis of the first-passage time has also
been presented, which resulted in simple expressions for the ex-
pected time interval between response outbreaks. Yet another case
of intermittency has also been studied for the LV system as used
in population dynamics whereby strong “softening” nonlinearity
may also become a source of intermittency at high intensity of
parameter variations �together with closeness to the bifurcation
point�.
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nondimensional.
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A Screw Theory of Timoshenko
Beams
In this work, the classic theory of Timoshenko beams is revisited using screw theory. The
theory of screws is familiar from robotics and the theory of mechanisms. A key feature of
the screw theory is that translations and rotations are treated on an equal footing and
here this means that bending, torsion, and extensions can all be considered together in a
particularly simple manner. By combining forces and torques into a six-dimensional
vector called a wrench, Hooke’s law for the Timoshenko beam can be written in a very
simple form. From here simple expressions can be found for the kinetic and potential
energy densities of the beam. Hence equations of motion for small vibrations of the beam
can be easily derived. The screw theory also leads to a new understanding of the bound-
ary conditions for beams. It is demonstrated that simple boundary conditions are closely
related to mechanical joints. In order to set up the boundary conditions for a beam
attached to a joint, a system of wrenches dual to the screws representing the freedoms of
the joint must be found. Finally, a screw version of the Rayleigh–Ritz numerical method
is introduced. An example is investigated in which the boundary conditions on the beam
lead to vibrational modes of the beam involving bending, torsion, and extension at the
same time. �DOI: 10.1115/1.3063630�

1 Introduction
In this work, the well known theory of Timoshenko beams is

re-examined from the point of view of screw theory. Screw theory
is usually associated with spatial mechanisms and robots, al-
though it dates back to the work of Ball at the end of the 19th
century �1�. In robotics and mechanism theory, it has been found
that considering translations and rotations together produces con-
cise symbolic equations, which can be easily manipulated.

Euler–Bernoulli and Timoshenko beam theory treat the beam as
a stack of elemental plates or sections. Under the effects of a
stress, these plates undergo rigid transformations; this approxima-
tion is valid for small deflections in many materials. However, the
usual analysis treats bending, torsion, and extension/compression
separately and hence problems in which the beam experiences
several of these deflections at once are hard to treat. Textbook
problems are careful to study loading schemes and boundary con-
ditions where only one type of deflection is relevant. However,
more general types of loading and boundaries are common, for
example, in the members of a spatial mechanism or robot. A natu-
ral way to treat these problems seems to be by using screw theory,
since screw theory is based on the geometry of the group of rigid-
body motions SE�3� and its Lie algebra se�3�.

In this work, we show how the deflection of a beam can be
modeled by a screw-valued function along the beam. A screw
form of Hooke’s law for Timoshenko beams is then presented.
This introduces the compliance density of the beam. From this, a
Lagrangian density for the beam can be derived and hence the
equations of motion are easily found. The screw form of some
possible boundary conditions is considered next. Then we turn to
consideration of a numerical method, the Rayleigh–Ritz method,
for computing the vibrational modes and frequencies of the beam.
This also has an elegant derivation in terms of screw theory. Fi-
nally, we consider a particular example of a simply supported
cylindrical beam where the joints supporting the beam at either
end have perpendicular axes. Approximations to the first few
modal frequencies and shapes are presented.

We begin by reviewing some elementary screw theory.

2 Screw Theory
For rigid-body motions, a twist �or screw here� is an element of

se�3�, the Lie algebra to the group of proper rigid-body motions.
This can represent a small displacement of a rigid body or the
velocity of the body.

A general screw can be written as sT= ��T ,vT�, where � is the
angular velocity and v is the linear velocity. So a screw is a
combination of the angular velocity and linear velocity of the rigid
body. Alternatively, v could represent a small translation and � a
small rotation, that is, the components of � are small rotations
about the x, y, and z axes.

To each screw, one may associate a line in space, the screw
axis, and a scalar p, called the pitch of the screw. A line in space
is specified by its direction � and its moment r��, where r is
any point on the line. The translational part of the screw v can be
split into a part perpendicular to � and a part parallel to �,

v = r � � + p� �1�

The axis of the screw is lT= ��T , �r���T�, and the pitch of the
screw is given by the quantity �� ·v� / �� ·�� so long as ��0.
When �=0, the screw represents a pure translation and the pitch
is said to be infinite. Zero pitch corresponds to pure rotations and
positive pitch screws are said to be right handed while negative
pitch screws are left handed.

An active transformation will move the screw according to the
relation

s� = Hs = � R 0

TR R
���

v
� �2�

where R is the rotation matrix of the transformation and T is the
antisymmetric matrix representing the translation �Tx= t�x�. The
transformation matrix H here is an element of the adjoint repre-
sentation of the group SE�3�. The corresponding passive transfor-
mation is given by the inverse of the active transformation matrix
H, as follows:

s = H−1s = � RT 0

− RTT RT ���

v
� �3�
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A wrench is also a six-dimensional vector WT= �MT ,FT�, but
this is different from the twist. It is an element of the dual to the
Lie algebra. The vector F is the force and M is the moment acting
on the rigid body.

The generalized momentum of a rigid body, consisting of the
linear and angular momentums, also forms an element of the dual
to the Lie algebra. The key difference between Lie algebra ele-
ments and elements of the dual space is their transformation prop-
erties.

The pairing of a wrench and a screw WTs gives a quantity
proportional to the energy or power, depending whether the screw
represents a displacement or a velocity. These quantities are sca-
lars; they are invariant with respect to rigid transformations. To
ensure that the combination is invariant, wrenches must transform
under the inverse transpose representation of H for an active trans-
formation and the transpose of H for a coordinate change

W� = H−TW = �R TR

0 R
��M

F
�, W = HTW = �RT − RTT

0 RT ��M

F
�

�4�

The inverse transpose of H is an element of the co-adjoint rep-
resentation of SE�3�.

Wrenches also have axes and pitches: The pitch of a wrench
WT= �MT ,FT� is given by p= �F ·M� / �F ·F�, and the axis of the
wrench is the line with direction F and moment M− pF.

More details on the group SE�3� and its applications to robotics
and mechanism theory can be found in Ref. �2�, for example. In
Sec. 3, the application of this screw theory to the deflection of a
beam will be developed.

3 Bending of Beams

3.1 The Deflection Screw. As mentioned above, in this ap-
proximation the beam is modeled by a stack of elemental cross
sections or plates. Each of these plates may undergo a rigid-body
motion. To keep track of them, we place a coordinate frame in
each plate, its origin coincident with the centroid of the plate, and
its x and y-axes of this local frame will be aligned with the prin-
ciple directions of the local cross section. These coordinate frames
will be collectively referred to as the local moving frame. A glo-
bally fixed coordinate frame will also be required; for conve-
nience, this will be located at the foot of the beam. In fact, it will
be simplest to have the globally fixed frame and the moving frame
coincide at the foot of the beam.

Again for simplicity, we will assume that the unstressed beam
is straight so that the centerline of the beam lies along the z-axis.
The passive transformation from the frame in the plate a distance
� from the foot of the beam to the global frame and is given by
the matrix H−1

H−1 = � I3 0

�Tk I3
� �5�

with

Tk = �0 − 1 0

1 0 0

0 0 0
� �6�

So, for example, the centerline of the beam will be given by

p0 = �0

0

�
� = �k �7�

where k is the unit vector in the z direction, but in the local
moving frame this vector is simply

p0 = 0 �8�
see Fig. 1. Notice that we are using a bar to denote vectors re-

ferred to the global frame.
When the beam is deflected, each plate will be subjected to a

different rigid motion; the deflection might be modeled using a
rigid-body motion at each point. This would lead to a theory that
is sometimes referred to as “geometrically exact” beam theory or
Cosserat theory; an attempt to describe such a theory in terms of
screws was made in Ref. �3�.

Here, however, we assume that the deflections are small and so
can be described by elements of the Lie algebra. So the state of
the beam will be described by a “deflection screw” s���. The
deflection screw specifies the position and orientation of each el-
ement in the beam relative to its position and orientation when the
beam is undeformed, see Fig. 1. When we consider the dynamics
of the beam in a moment, the deflection screw will also depend on
time s�� , t�. The small rotations of the axes in the stressed state
will be written as a vector �, and the translation vector will be
written as v. So the deflection screw, in the local moving frame, at
arc length � is given by

s��� = ��

v
� =�

�x���
�y���
�z���
vx���
vy���
vz���

� �9�

From screw theory, if a point q0 is subject to a screw sT

= ��T ,vT�, its new position will be given by q=��q0+v. Apply-
ing this to the center of the beam in each element, we obtain the
centerline curve p��� given by

p��� = � � p0 + v = v �10�

In other words, we may identify the translational part of the de-
flection screw with the centerline curve of the beam.

Next, we turn to derivatives. The derivative of the deflection
screw, expressed in the moving frame, will be denoted s� and the
derivative in the global frame by ds /d�. The two are related by
the equation

s� =
d

d�
s + Bs �11�

where the Lie algebra element B is given by

B = H
d

d�
H−1 = −

d

d�
H H−1 = � 0 0

Tk 0
� �12�

with H−1 as above. In particular, the derivative of the deflection
screw is given by

y

x

z,
µ

x

y

z
s

Fig. 1 Coordinate frames along the beam
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s� = � ��

v� + k � �
� =�

�x�

�y�

�z�

vx� − �y

vy� + �x

vz�

� �13�

The second derivative can be found in the same way to be

s� = � ��

v� + 2k � ��
� �14�

3.2 Compliance. We begin with the standard equations of
beam theory,

d

d�
pz =

Fz

EA
,

d

d�
�z =

Mz

GJ
,

d

d�
�x =

Mx

EJx
,

d

d�
�y =

My

EJy

�15�

where the symbols used have their usual meaning: E is Young’s
modulus, G is the shear modulus of the material, A is the cross-
sectional area of the beam, and the Js are the relevant area inte-
grals. The vectors FT= �Fx ,Fy ,Fz� and MT= �Mx ,My ,Mz� repre-
sent the force and torque acting on the beam. The quantities Mx
and My are usually called the bending moments, while Fx and Fy
are the shear forces. The quantities can be combined into a single
wrench acting on the beam

W = �M

F
� �16�

Now for the Euler–Bernoulli approximation, the gradient of the
centerline is related to the bending angles by

px� = �y and py� = − �x �17�

But in the Timoshenko approximation, we consider a loss of slope
due to shearing, see Ref. �4�, Sec. 39. The perpendicular to the
face of the element is not tangent to the centerline curve here. For
the Timoshenko beam, we have

px� − �y =
Fx

axGA
and py� + �x =

Fy

ayGA
�18�

where, as usual, A is the cross sectional area of the beam and G is
the shear modulus. The constants ax and ay depend on the shape of
the beam’s cross section, for a circular cross section ax=ay =2 /3.

Comparing this with Eq. �13�, we have the fourth and fifth
components of s� are the right-hand sides of the above equations.
This can be combined with Eq. �15� above to give the following
version of Hooke’s law:

s� = cW �19�

The matrix c is the compliance density of the beam and is easily
seen to be given by

c = diag� 1

EJx
,

1

EJy
,

1

GJ
,

1

axGA
,

1

ayGA
,

1

EA
� �20�

where diag�x1 , . . . ,xn� denotes the diagonal matrix with entries
x1 , . . . ,xn. In the Euler–Bernoulli approximation, the fourth and
fifth places here would be zero.

In Ref. �5�, von Mises derived the compliance matrix of a
straight beam using the standard equations of Euler–Bernoulli
beam theory. We can find a similar compliance matrix for the
Timoshenko beam by integrating the compliance density given
above along the beam. To do this, we need to know the compli-
ance density at all points along the beam but expressed in a com-
mon coordinate system. A convenient frame to choose is located

at the center of the beam. In this frame, a beam element, a dis-
tance � from the center, has compliance density c̄���=H−1cH−T,
where H is the translation:

H = � I3 0

�Tk I3
� �21�

So integrating the compliance density from −l /2 to l /2 gives the
compliance matrix C, of a beam of length l,

C =	
−l/2

l/2

c̄���d�

= diag� l

EJx
,

l

EJy
,

l

GJ
,

l

axGA
+

l3

12EJy
,

l

ayGA
+

l3

12EJx
,

l

EA
� �22�

This can be seen to be a slight modification of the result given by
von Mises. For comparison, consider a cylindrical steel rod of
length 2 m and radius 5 cm; the terms in the compliance matrix
are l / �axGA�
5�10−9N−1 m and l3 / �12EJy�
6�10−7N−1 m.
That is, the Timoshenko correction is a hundred times smaller
than the corresponding term in the Euler–Bernoulli theory. �The
material properties used here are the same as those used in the
example considered in Sec. 6 below.�

In this coarser approximation, Hooke’s law is given by

s�l/2� − s�− l/2� = CW �23�

were s�l /2� and s�−l /2� are the deflection screws at either end of
the beam and W is the wrench acting on the beam.

4 Variational Methods

4.1 The Lagrangian. In general, the potential energy of an
elastic system is given by the work done in stressing the system.
Here we have

Ep =
1

2	
0

l

WTs�d� �24�

reverting to our original parametrization of the beam with � run-
ning from 0 to l. Using the generalized version of Hooke’s law
given in Eq. �19� above, this can be written as

Ep =
1

2	
0

l

s�Tks�d� �25�

where k is the stiffness density given by k=c−1

=diag�EJx ,EJy ,GJ ,axGA ,ayGA ,EA�.
The kinetic energy of the beam is given by integrating the ki-

netic energies of all the elements along the beam

Ek =
1

2	
0

l

ṡTnṡd� �26�

The quantity n here represents an inertia density, and ṡ=ds /dt
represents the time derivative of the deflection screw.

The inertia density of the beam can be written as

n = � diag�Jx,Jy,J,A,A,A� �27�

where � is the mass per unit length of the beam, A is the cross-
sectional area, and J ,Jx ,Jy are the moments of area.

In Euler–Bernoulli theory, the rotational inertias Jx and Jy are
assumed to be small and are neglected, but in the Timoshenko
theory they are retained.

The Lagrangian density

L = 1
2 �ṡTnṡ − s�Tks�� �28�

can be introduced. The Lagrangian function, the difference be-
tween the kinetic and potential energies, L=Ek−Ep, is given as an
integral along the beam
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L =	
0

l

Ld� =
1

2	
0

l

ṡTnṡ − s�Tks�d� �29�

The Lagrangian density contains six dependent functions. In
such a case, we expect six equations of motion, one for each
dependent function. The general form of the equations of motion
will be

�L
��

−
�

��
� �L

���
� −

�

�t� �L

��̇
� = 0 �30�

see Ref. �6� or Ref. �7�, for example. This is the Euler–Lagrange
equation, which is necessary to make the Lagrangian stationary
with respect to variations in the function �x ,�y ,�z ,vx ,vy or vz.
Since there are no external generalized forces, the right-hand side
is zero.

4.2 Equations of Motion. The Euler–Lagrange equations are
simple to evaluate.

We can summarize the six equations of motion into a single
screw equation:

ks� + k�s� − ns̈ = 0 �31�

where the 6�6 matrix k� here is given by

k� =�
0 0 0 0 − ayGA 0

0 0 0 axGA 0 0

0 0 0 0 0 0

0 axGA 0 0 0 0

− ayGA 0 0 0 0 0

0 0 0 0 0 0

� �32�

The matrix k� is the derivative of k in the moving frame and can
be written as

k� = − BTk − kB �33�

where B is as defined in Eq. �12� above.
The above gives a system of six coupled second order partial

differential equations. In fact, it is only the bending and shearing
that are coupled. The classic Timoshenko beam equation

� �2

��2 −
�

E

�2

�t2�� �2

��2 −
�

ayG

�2

�t2��x +
�A

EJx

�2�x

�t2 = 0 �34�

is a single fourth order partial differential equation in one bending
variable only. This classic equation can be recovered from the
system given above by eliminating the shear variable vx or vy
from the equations containing it. This, to some extent, validates
our derivation.

4.3 Boundary Conditions. In order to solve the equations of
motion given above, we need to specify the boundary conditions.
In standard beam theory, we have three main types of boundary
conditions. If the end of the beam is clamped, then the deflection
screw must be zero, s�0, t�=0. Notice that for an Euler–Bernoulli
beam this includes both vx=0 and vx�=�y =0, and similar for bend-
ing in the x-direction.

If one end of the beam is free, say, the end at �= l, then there
are no forces or torques acting at that end. Hence from Hooke’s
law, Eq. �19�, we have that s��l , t�=0.

The third type of boundary condition is a simply supported end.
Essentially this can be thought of as attaching the beam to a revo-
lute joint. In the “spatial” formalism presented here, this can be
generalized to an arbitrary joint. Some directions will be free and
some clamped. As an example, consider a beam attached to a
revolute joint; the beam will be free to turn about the joint axis but
will be clamped in all other directions. This means that the beam
will not experience any torque about the joint axis. Suppose the

joint is represented by a screw �; for a revolute joint this would be
the axis of the joint. Now we can find six independent wrenches
Wi, which satisfy

W1
T� = 1 and W j

T� = 0, j = 2,3, . . . ,6 �35�

Notice here that W1 is the only wrench, which will do any work
on a body moving with instantaneous velocity �. If � is a line,
corresponding to a revolute joint, then W1 would represent a pure
torque about that joint. Now if the joint is located at the foot of the
beam, �=0, the boundary conditions can be written as

W1
Ts��0,t� = 0 and W j

Ts�0,t� = 0, j = 2,3, . . . ,6 �36�

Finding the wrenches Wi is straightforward and can often be
done by inspection. Although we have only referred to revolute
joints in the above, the results apply without change to any one-
degree-of-freedom joint. So beams terminated by prismatic or he-
lical joints can also be treated. Moreover, the method given above
easily extends to joints with several degrees of freedom, so cylin-
drical and spherical joint can also be studied. In fact, the clamped
and free boundary conditions can be seen as particular cases of
this general approach, for a clamped end there are no degrees of
freedom while for a free end there are six degrees of freedom.

5 The Rayleigh–Ritz Method
The Rayleigh–Ritz method is a standard numerical method for

approximating the frequencies and mode shapes for vibrating sys-
tems, see Ref. �8�, Secs. 6–31, for example. Moreover this tech-
nique has often been used to study vibrations in Timoshenko
beams in various situations, see Refs. �9–11� to cite just a few
examples. The purpose of this section is to show how the
Rayleigh–Ritz method can be easily combined with the screw
theory. In particular, we show that the screw form of the boundary
conditions developed above is simple to incorporate into the
Rayleigh–Ritz method. In order to do this, we need to set up some
notation and the simplest way of doing this seems to be to re-
hearse the familiar derivation of Rayleigh–Ritz method but using
screw theory.

As is well known, the idea behind the Rayleigh–Ritz approxi-
mation is not to derive equations of motion from the Lagrangian
but to approximate the solution to the variational problem directly.
We seek a function that makes the Lagrangian given above sta-
tionary. The approximation comes from the fact that the functions
we use only come from a small finite set of functions. The set of
functions we choose is not too important, although a good choice
can help with the accuracy or simplify the computations. Some-
times we can choose a set of functions that satisfy the boundary
conditions; when this is not possible we must treat the boundary
conditions as constraints.

5.1 Basic Theory. Assume that the displacement screw has
the following approximate form:

s��,t� 
 �s1f1��� + s2f2��� + ¯ + sqfq����cos��t + ��
�37�

that is, a simple harmonic vibration where the shape of the beam
is determined by the functions f i���. These functions are often
referred to as shape functions and many different choices are
possible.

The idea is to substitute the above into the expression for the
Lagrangian and then minimize with respect to the coefficients.
This is quite simple in this case since the coefficients are the
constant screws s1 , . . . ,sq.

It is convenient to introduce a “stacked” notation. Let z be the
6q�1 vector consisting of the coefficient screws s1 ,s2 , . . . ,sq
stacked on top of each other:
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z =�
s1

s2

]

sq

� �38�

Another way of putting this is to say that z is an element of the
tensor product se�3� � Rq. With this notation, the approximate La-
grangian takes the form

L 
 1
2 ��2zTNz sin2��t + �� − zTKz cos2��t + ��� �39�

where the 6q�6q matrix N is given by N=n � F and the matrix K
is given by K=k � F2+kB � F1+BTk � F1

T+BTkB � F, where B is
as in Eq. �12� above. The F matrices are q�q matrices of inte-
grals:

Fij =	
0

l

f i f jd�, �F1�ij =	
0

l

f i f j�d�, �F2�ij =	
0

l

f i�f j�d�,

i, j = 1,2, . . . ,q

Note that in substituting for s� it is necessary to make use of the
relation �11�, so that

s���,t� 
 ��
i=1

q

f i����si + f i���Bsi�cos��t + �� �40�

Minimizing the Lagrangian yields a linear eigenvalue problem

Kz − �2Nz = 0 �41�

5.2 Boundary Conditions Again. If the shape functions f i
satisfy the boundary conditions, then the above argument needs no
modification. However, it is more usual to choose shape functions
that do not automatically satisfy the boundary conditions. To cope
with this situation, we can treat the minimization of the Lagrang-
ian as a constrained optimization problem.

Suppose we have a free end with a corresponding boundary
condition s��l , t�=0. Substituting Eq. �37� into this gives

s��l,t� = ��
i=1

q

f i��l�si + f i�l�Bsi�cos��t + �� = 0 �42�

see Eq. �40� above. Since this must be satisfied for all t, we can
conclude that

�
i=1

q

f i��l�si + f i�l�Bsi = 0 �43�

Let us introduce a sequence of 6�6 matrices:

Ui
T = f i��l�I6 + f i�l�B, i = 1,2, . . . ,q �44�

where I6 is the 6�6 identity matrix. The constraint equation can
now be written in terms of our stacked variable z as

�U1
T�U2

T� . . . �Uq
T�z = 0 �45�

Next we introduce six Lagrange multipliers �T

= ��1 ,�2 , . . . ,�6�. The constrained optimal solution now satisfies
the following linear equations:

Kz − �2Nz +�
U1

U2

]

Uq

�� = 0 �46�

Now we can combine these equations with the constraint Eq. �43�
into a single set of linear homogeneous equations by extending
our stacked notation. Let

z̃ = �z

�
� �47�

and set

K̃ =�
U1

K ]

U2

U1
T

¯ Uq
T 0

� and Ñ =�
0

N ]

0

0 ¯ 0 0
�

�48�
All the equations can now be written as

�K̃ − �2Ñ�z̃ = 0 �49�
Hence the approximate vibrational frequencies will be given by
the solution to the eigenvalue equation:

det�K̃ − �2Ñ� = 0 �50�
If the beam is connected to a joint, then from Sec. 4.3 above,

we have the boundary conditions

W1
Ts��0,t� = 0 and W j

Ts�0,t� = 0, j = 2,3, . . . ,6 �51�

where the wrenches Wi are as described in Sec. 4.3. If we substi-
tute our approximation for s�� , t� given in Eq. �37� above, we get

�
i=1

q

W1
T�f i��0�I6 + f i�0�B�si = 0 and �

i=1

q

f i�0�W j
Tsi = 0,

j = 2,3, . . . ,6 �52�

Now let us construct a new sequence of 6�6 matrices:

Vi = �f i��0�W1 + f i�0�BTW1�f i�0�W2� ¯ �f i�0�W6�, i = 1,2, . . . ,q

�53�

That is, the columns of Vi are the six wrenches multiplied by the
appropriate boundary value of the shape function. The boundary
condition can now be expressed as

�
i=1

q

Vi
Tsi = �V1

T�V2
T� . . . �Vq

T�z = 0 �54�

As above, we can now cast the constrained optimization problem
into the same extended eigenproblem:

�K̃ − �2Ñ�z̃ = 0 �55�

where now K̃ is given by

K̃ =�
V1

K ]

Vq

V1
T

¯ Vq
T 0

� �56�

and Ñ as above.
Notice that the free end, considered first, is really a special case

of the jointed end considered subsequently. In fact, it is easy to see
how to treat an n degree-of-freedom jointed end, where 0�n
�6. All that is needed is to find the wrenches Wi dual to the
screws of freedom at the end of the beam and then define the
columns matrices Vi as f i��0�W j + f i�0�BTW j or f i�0�W j depending
on whether motion about s j is clamped or free. This simplicity in
treating different boundary conditions is one of the main utilities
of the method.

6 Example: A Robot Link
In this example, the utility of the screw theory becomes even

more clear. A standard case from classical beam theory is a beam
hinged at one end. In the case of the robot link, the beam is hinged
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at both ends and moreover, these hinges may not be parallel. This
means that in these cases the vibrational modes may not be pure
bending, pure torsion, or pure extension but rather some mixtures
of these. The tools developed above are particularly suited to this
case.

As an example, we study here the vibrations of a 2 m cylindri-
cal steel bar with a radius of 5 cm. We assume that the ends of the
bar are constrained to rotate about two perpendicular joints. At
one end �=0, we have a joint described by the screw sa and at the
other end �= l, the joint is sb with

sa = �1,0,0,0,0,0�T, sb = �0,1,0,− l,0,0�T �57�

where l=2 for this example.
We propose to model the shape of the beam by a Bézier spline.

That is, we chose the shape functions to be Bernstein polynomials,
f i���=bq,i���= � q

i
��i�1−��q−i. We need to redefine the numbering

of the terms in the approximation here since the Bernstein poly-
nomials in a Bézier curve are usually numbered from 0 to q, so the
approximate shape of the beam will be given by

s��� 
 s0bq,0��

l
� + s1bq,1��

l
� + s2bq,2��

l
� + ¯ + sqbq,q��

l
�

�58�
By judicially choosing the first and last screws, the boundary

conditions can be satisfied automatically. Let s0=	sa and sq

=
sb. The boundary conditions, W j
Ts�m , t�=0, j=2, . . . ,6 for m

=0 and m= l, are then satisfied, �of course the constraint wrenches
will be different at the two ends�. Next we must deal with the
other boundary conditions W1

Ts��m , t�=0. The derivatives of the
Bernstein polynomials at 0 are all zero, except for the first two for
which we have

b0,q� �0� = − q and b1,q� �0� = q �59�

Hence we have that

W1
Ts��0,t� = 0 = − qW1

Ts0 + qW1
Ts1 + W1

TBs0 �60�

In this example, W1
T= �1,0 ,0 ,0 ,0 ,0�, so that the boundary condi-

tion expresses the idea that there can be no torque about the x-axis
at the end of the beam. The term W1

TBs0 is zero and so we can
conclude that

W1
Ts1 = W1

Ts0 = 	 �61�

Now the boundary wrenches W1 , . . . ,W6 are linearly indepen-
dent so it will be possible to expand the identity matrix as

I6 = saW1
T + sa2W2

T + ¯ + sa6W6
T �62�

That is, it will be possible to find the screws sai to satisfy this
equation. However, we do not need to actually calculate them, all
we need to do is to observe that

s0 = I6s0 = saW1
Ts0 �63�

since s0 already satisfies the boundary conditions Wi
Ts0=0, i

=2, . . . ,6. Substituting from Eq. �61� above gives

s0 = saW1
Ts1 �64�

This means that in the expression for the approximate Lagrangian
L
�1 /4���2zTNz−zTKz�, we can substitute for s0. The results are
easier to see if we just concentrate on the kinetic energy term

zTNz = �
i=0

q

�
j=0

q

si
Tns jFij = s0

Tns0F00 + �
i=1

q

si
Tns0Fi0 + �

j=1

q

s0
Tns jF0j

+ �
i=1

q

�
j=1

q

si
Tns jFij �65�

here the first row, first column, and top-left-hand elements have
been separated out. After the substitution, we can write

zTNz = s1
T�W1sa

TnsaW1
TF00 + nsaW1

TF10 + W1sa
TnF01 + nF11�s1

+ �
i=2

q

si
T�nsaW1Fi0 + nFi1�s1 + �

j=2

q

s1
T�W1sa

TnF0j + nF1j�s j

+ �
i=2

q

�
j=2

q

si
Tns jFij �66�

In terms of the large matrix N, this simply means that we must
modify the first six rows and add them to the second six, modify
the first six columns and add to the second six columns, and then
modify the top-left 6�6 block and add to the next 6�6 diagonal
block. After this the first six rows and columns, the ones associ-
ated with s0, can be removed reducing the overall size of the
problem a little. The boundary condition at the other end of the
beam can be treated in a similar way, eliminating the last six rows
and columns. And of course the same procedure can be performed
for the potential energy matrix K.

The computations for this example were performed using
MATHEMATICA. The material properties of mild steel were used:

� = 7.8 � 103kg m−3, E = 21.0 � 1010N m−2,

G = 8.0 � 1010N m−2

Results for first few frequencies are shown in Table 1. As can
be seen, the results for the lowest frequency ��1� seem to con-
verge quickly, but the next two higher frequencies converge more
slowly. Also the frequencies seem to be paired, the first two, third
and fourth, and fifth and sixth are close together. This can be
explained by the symmetry of the problem. If we rotate the beam
through 180 deg about an axis halfway along the beam and set at
45 deg to the axes of the joints, then clearly nothing has changed.
Hence we expect the solutions to be degenerate; that is, we expect
the modes to occur in pairs with the same frequency and mode
shapes related by the symmetry transformation described above. A
better numerical approach would have taken account of this. How-
ever, it is a simple matter to find the shapes of the modes and
these are shown in Fig. 2. Notice the large extensions near the
beam ends.

The numerical approach used here was somewhat rudimentary,
relying only on the standard routines supplied with the software to

Table 1 The first three frequencies „Hz… for different orders of approximating splines „q…

q �1 �2 �3 �4 �5 �6

4 496.431 521.821 3492.494 4288.008 5030.611 8150.522
5 496.018 512.325 1603.640 1614.248 5030.611 6691.791
6 495.444 509.864 1594.628 1595.897 3347.973 3355.881
7 495.437 506.521 1581.400 1591.978 3292.574 3306.659
8 495.437 503.967 1581.171 1590.074 3231.632 3241.088
9 495.437 502.211 1581.086 1587.596 3229.490 3238.284

10 495.437 500.933 1581.085 1586.336 3228.191 3233.476
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find eigenvalues and eigenvectors. More important is the fact that
these computations can be done quite simply and it should be
expected that the methods described in this work can be used to
produce accurate results if more attention is paid to numerical
methods used. For example, it is well known that the success of
the Rayleigh–Ritz method depends on the choice of shape func-
tions. Here Bézier splines were used but perhaps some other
choice would be better, B-splines, for instance �this would have
the advantage of making the matrix F tridiagonal�.

7 Conclusions
In this work, traditional Timoshenko beam theory has been

translated into screw theory. The advantage of this is that the
different vibrational modes, bending, torsion, and extension/
compression, can be treated on an equal footing and so problems
involving all modes at the same time can be formulated and
solved quite simply. The exposition given above only treats
straight beams with uniform cross sections; however, there is no
reason why this approach cannot be extended to curved rods with
varying cross sections.

A variational method, based on the Lagrangian density along
the beam, was used. This method provides an elegant and efficient
way to derive the equations of motion. The equations of motion
can be written as a screw equation, which neatly summarizes the
equations for the different vibrational modes of the beam. Ex-
pressing the Lagrangian as the integral of a density along the
beam also leads to a screw version of the familiar Rayleigh–Ritz
method for computing the vibrational modes and frequencies of
the beam.

The use of screw theory also leads to a new view of the bound-
ary conditions. In standard beam theory, there are several different
kinds of boundary conditions: clamped ends, free ends, and sim-
ply supported ends. By considering the freedom and constraints as
screws and wrenches, all these different types of boundary condi-
tions can be thought of as examples of a single type of boundary
condition. In this scheme, the screws of freedom and wrenches of
constraint must be identified at the ends of the beam. The number
of freedoms and constraints will always total 6. With six con-
straints and no freedom, the end of the beam is clamped. On the
other hand, if the beam has no constraints and has six degrees-of-
freedom then it is free. In the case where the end of the beam has
a single degree-of-freedom, we can think of the beam as a being
attached to a mechanical joint. Usually, this will be a revolute
joint corresponding to a pinned end or knife-edge. But now there
is no essential difference between different kinds of one degree-
of-freedom joint, so it would be a simple matter to study beams
attached to helical or prismatic joints. A rolling node can be
thought of as a two degree-of-freedom end, and a passive ball and
socket joint is a three degree-of-freedom end.

The example given in Sec. 4 above is intended to be indicative
only. By having simply supported ends but with the axes of free-
dom at right angles, the modal solutions will be combinations of
bending in both directions perpendicular to the beam axis and also
torsion and extension/compression along the beam axis. There is a
large literature on coupled vibrations in Timoshenko beams, see
Refs. �12,13� for just two examples. However, in these works
coupled vibrations occur because of a nonsymmetric beam sec-
tions. In the example studied above, the beam section is symmet-
ric, and the coupling arises because of the boundary conditions.

We believe that this effect is less well studied. It was suggested
above that this example might have some relevance for robot
links. This is perhaps overstating things a little. Although a robot
link has joints at either end, it cannot usually rotate freely about
these joints since they are driven by motors. Often there is a lot of
compliance at the joints of a robot and this compliance will usu-
ally be more significant than the compliance of the links for study-
ing vibrations of the system. However, for space robots and espe-
cially designed flexible robots, this work may have some value. A
better model might be a cantilever with mass at the free end. But
this mass should not be a point mass, its inertia should be taken
into account. Again the screw formalism used in this work will be
useful here. In a real system, the ends of the link will have some
structure, which is not the same as the body of the beam and these
end-effects should be taken into account.

The present work only applies to small deformations of beams
as the deflections are modeled by screws. A more accurate ap-
proach would be to model the deflection of the beam at each point
along its length as a rigid motion; this leads to the well known
Cosserat theory of beams, sometimes referred to as geometrically
exact beam theory, see Refs. �14,15�. In future work, we hope to
be able to study this problem from a screw theory perspective.
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Evaluation of Mixed-Mode Stress
Intensity Factors for a Sharp
Notch-tip With Curved and
Stressed Edges
For a sharp notch with curved edges and subjected to surface tractions along the edges,
the fracture parameters (in particular, the stress intensity factors and the size of a
singular-dominant zone) are significantly affected by the near-tip geometric and loading
conditions. In this paper, a pair of contour integrals termed JkR is presented for calcu-
lating the mixed-mode stress intensity factors at such a sharp notch-tip. Furthermore, by
proper use of the integrals, the extent of the singular-dominant zone can be effectively
characterized. Since no a priori auxiliary (or, complementary) solutions are required in
its formulation, the approach appears to be feasible for problems of arbitrary notch
angles and curved shapes. Also, no special treatments are required for the modeling of
the near-tip singular behavior so that the integration can be performed by direct use of
numerical schemes such as finite element method. �DOI: 10.1115/1.3002333�
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path-independence, singular-dominant zone

1 Introduction

The edges for a sharp notch-tip may have arbitrary curved
shapes. Also, the tractions along the notch edges—which may be
due to pressurized fluids, contact pressure, interfacial friction of
inclusions, etc.—are frequently of practical interest in many engi-
neering applications. The associated fracture behavior in the near-
tip area thus depends significantly on the notch geometry and
loading condition. For problems containing complex geometric
and loading conditions, direct evaluation of the near-tip stress
field with numerical schemes such as finite element method ap-
pears to be difficult due to the complicated mechanical state
around the singular point. Investigations on proper numerical ap-
proaches are therefore in need.

For a sharp notch with straight and traction-free edges, the or-
der of stress singularity at the notch-tip is dependent on the notch
angle and different from that of the crack case �i.e., r−1/2�. In
particular, it is noted that the Mode I and Mode II asymptotic
stresses are governed by different orders of singularity, with the
strength of singularity for Mode II substantially weaker than that
of Mode I �1–4�. The mixed-mode singular stress field for a
notch-tip in linear elasticity can be effectively characterized by a
pair of stress intensity factors �SIFs�, similar to the concept cus-
tomarily used in the crack case. Due to the difficulty in direct
evaluation of SIFs, a number of indirect approaches have instead
been proposed for the purpose. Most of the approaches are based
on the concept of contour integrals. For example, a modified
H-integral was presented to compute either pure- or mixed-mode
SIFs in notched solids with various notch angles �5–8�. In order to
perform the H-integral, a set of particularly complementary solu-
tions needs to be developed. In addition to H, another pair of
contour integrals termed JkR were presented by the authors �9� for

the calculation. By comparing with the H-integral, JkR appears to
be more straightforward in practice since no extra complementary
solutions are required in their formulation.

On the other hand, for the special instance when the singular
point corresponds to a crack tip, a variety of studies have been
presented for problems containing curved traction-free cracks.
Among them, theoretical studies were developed for a description
of the mixed-mode asymptotic stress behavior for curved cracks
with various shapes of curvature �10–12�. Also, a number of con-
tour or area integrals have been proposed for the calculation of
SIFs or other fracture parameters associated with curved cracks
�13–15�. Nevertheless, more study is required in order to establish
general formulation of problems containing notch-tips with
curved and stressed edges.

The object of this paper is to evaluate the mixed-mode stress
intensity factors for a sharp notch-tip with curved edges, which
appears as a general case of the aforementioned curved crack
problems. Also, the study is considered with the presence of sur-
face tractions along the notch edges. A numerical procedure,
based on the concept of the JkR-integrals, is developed for this
purpose. Since no extra auxiliary or complementary solutions are
required in their formulation, JkR thus appear to be applicable for
problems of arbitrary curved shapes. The approach is developed
and incorporated with the finite element method for numerical
calculation. No particular singular elements are used in the study.

2 The Asymptotic Stress Field
Consider an elastic body in a 2D field containing a sharp notch

with its edges of arbitrary curved shape and of asymptotically
tangential angle � at its tip O �Fig. 1�. A local coordinate system
originating at the notch-tip O is introduced, with the notch angle
being bisected by the �negative� x1-axis. The body is then sub-
jected to a system of loads, which includes particularly the trac-
tion vector tn applied on the notch edges. In order to establish the
expression for the asymptotic near-tip stress field, we need to
consider the boundary value problem formulated in terms of the
Airy stress function with the prescribed traction boundary condi-
tions on the notch edges. This leads to a solution consisting of two
parts, which are the particular solution �p �associated with the
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notch edge traction tn� and the homogeneous solution �h �associ-
ated with the traction-free boundary condition�. As a result, the
asymptotic near-tip stresses � can thus be expressed as

� = �p + �h �1�

Note that, as shown in the Appendix, �p is of finite value and
needs to be determined by solving the corresponding boundary
value problem. As to �h, by taking a specific Airy stress function
employed by Williams �1� and taking the traction-free �homoge-
neous� boundary condition on the notch edges, we then have the
following separable forms as functions of �:

�r
h�r,�;�� = r�1 �KI��

�2� − ��1/2 �f1���cos �1� + g1���cos��1 + 2���

+ r�2 �KII��

�2� − ��1/2 �h1���sin �2� + p1���sin��2 + 2���

�2�

��
h�r,�;�� = r�1 �KI��

�2� − ��1/2 �f2���cos �1� + g2���cos��1 + 2���

+ r�2 �KII��

�2� − ��1/2 �h2���sin �2� + p2���sin��2 + 2���

�3�

�r�
h �r,�;�� = r�1 �KI��

�2� − ��1/2 �f3���sin �1� + g3���sin��1 + 2���

+ r�2 �KII��

�2� − ��1/2 �h3���cos �2� + p3���cos��2 + 2���

�4�

where �r ,�� denote the polar components of the local coordinate
and −��−� /2���� ��−� /2�. The orders of singularity �1 and
�2 are the smallest nontrivial real eigenvalues of the following
pair of eigenequations:

sin��� + 1��2� − ��� � �� + 1�sin � = 0 �5�

The values of �1 and �2, as functions of �, are presented in Fig. 2.
The figure shows that the Mode I �symmetric� and Mode II �anti-
symmetric� stresses are governed by different orders of singular-
ity, except for the special case when �=0 �i.e., the crack problem,
with �1=�2=−0.5�. Since �2	�1, the strength of singularity for
Mode II stresses is thus essentially weaker than those for Mode I.
Also, for notch angles greater than 0.57� �approximately�, �2 be-
comes positive and, consequently, Mode II stresses appear to be
bounded. As an aside, the dimensionless coefficients f i, hi, gi, and
pi �i=1,2 ,3� are also explicit functions of �. Detailed descrip-
tions and discussions on variations of these coefficients with re-
spect to � can be found in the authors’ previous work �9�. Note
that Eqs. �2�–�5� are valid for problems containing both straight
and curved notch edges in that they are applied in the near-tip
region where the edges lie asymptotically along the tangential
directions.

As shown in Eq. �1�, the asymptotic near-tip stress field consists
of the finite-valued �p and the singular-valued �h. While the con-
tribution from �p is negligible in the singular-dominant area, the
size of the singular zone is inevitably and significantly affected by
its appearance. Cautious investigation on such effects is therefore
always necessary and will be presented in the following numerical
examples.

With the above mentioned asymptotic stress field, the mixed-
mode stress intensity factors for an arbitrary tangential notch
angle �, denoted as �KI�� and �KII��, can be defined as

�KI�� � lim
r→0

�2� − ��1/2r−�1���r,0;��

� lim
r→0

�2� − ��1/2r−�1��
h�r,0;�� �6�

�KII�� � lim
r→0

�2� − ��1/2r−�2�r��r,0;��

� lim
r→0

�2� − ��1/2r−�2�r�
h �r,0;�� �7�

These SIFs are undetermined constants that account for the
strength of stress singularity in the near-tip region. Note that the
SIFs depend on both the far-field and near-tip loading conditions
for a notch-tip with curved and stressed edges.

3 The JkR-Integrals
According to the concept of the conventional Jk-integrals

�16,17�, the corresponding contour integrals for a sharp notch-tip
can be defined as

x
1

x2

C1

C2

Γ

curved notch edges

n
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Fig. 1 An elastic body in a 2D field, containing a notch of as-
ymptotically tangential angle � at tip O
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Fig. 2 The values of �1 and �2, as functions of the notch angle
�
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Jk = lim

→0

�



�Wnk − �ijnj	 �ui

�xk

�ds, k = 1,2 �8�

where W is the strain energy density of the material, �ij and ui are
the Cartesian components of the stress tensor and the displace-
ment vector, nj is the Cartesian components of the outward unit
vector normal to 
 �as shown in Fig. 1�, and s is the arc length
along the contour. The path of integration, 
 is defined as a coun-
terclockwise contour encircling and shrinking onto the tip of the
notch O �this limiting case is not shown in Fig. 1�. Still, Eq. �8� is
valid for problems with both straight and curved notch edges in
that the path of integration, 
, is defined as a counterclockwise
contour encircling and shrinking onto the tip O �this limiting case
is not shown in Fig. 1�.

For the special case when �=0 �i.e., the crack problem�, the
integration in Eq. �8� results in a pair of finite-valued solutions for
J1 and J2. It is well known that the results of Jk can be used to
evaluate the mixed-mode SIFs at the crack tip. However, for notch
problems with generally ��0, the characteristic of finite values
of Jk is no longer valid. According to the authors’ previous work
�9�, the relationship between Jk and the SIFs �defined in Eqs. �6�
and �7�� for a notch-tip can be written as

J1 = lim
r→0

�

E
�r2�1+1a����KI��

2 + r2�2+1b����KII��
2� �9�

J2 = lim
r→0

−
2�

E
r�1+�2+1c����KI���KII�� �10�

where �=1 �for plane stress� or 1−2 �for plane strain�, E is
Young’s modulus, and  is Poisson’s ratio.. Also, a���, b���, and
c��� are dimensionless functions of �, and their variations with
respect to � are shown in Fig. 3. It is observed that, in addition to
�KI�� and �KII��, three extra terms �i.e., r2�1+1, r2�2+1, and r�1+�2+1�
are contained in Eqs. �9� and �10�. With the presence of these
three terms, we anticipate that the values of Jk vanish as the lim-
iting condition r→0 by definition.

Due to their vanishing feature, Jk are generally not suitable for
direct use in determining the asymptotic stress field. Nevertheless,
by choosing a small but finite cutoff radius R for the circular
integration path 
 and denoting the “JkR-integrals” as alternatives
for Jk, we then rewrite Eqs. �9� and �10� as

J1R =
�

E
�R2�1+1a����KI��

2 + R2�2+1b����KII��
2� �11�

J2R = −
2�

E
R�1+�2+1c����KI���KII�� �12�

With the cutoff radius, the results of JkR appear to be dependent on
the choice of R and turn out to be of finite values. The SIFs and,
consequently, the corresponding stress field can then be deter-

mined should the integrals be properly evaluated. However, in
order to have appropriate solutions for �KI�� and �KII��, it is re-
quired that R be taken in the region dominated by the asymptotic
singular field �h. Singular behavior is thus always involved in the
calculation.

4 Modified Path-Independence
As described, the integration path 
 for JkR is defined as a

counterclockwise circular contour with center at the notch-tip O
and of small radius R. In finite element calculations, the dis-
cretized solutions will, in general, describe the behavior around
the notch-tip O more or less accurately, depending on the degree
of local grid refinement and/or the adoption of special singular
elements. Therefore, direct calculation of JkR along 
 with nu-
merical solutions appears to be difficult. Nevertheless, when there
is no body force, we can alternatively have the JkR-integrals re-
written as

JkR =�

o

�Wnk − �ijnj	 �ui

�xk

�ds +�

C1+C2

Wnk − ti
n	 �ui

�xk

ds

�13�

where 
o is an arbitrary outer counterclockwise contour, and C1
and C2 are the portions of line segments along the curved notch
edges, which are enclosed by 
o and are terminated at a distance
of R away from the tip O, as shown in Fig. 1. Note that the
integrand in the last term of Eq. �13� accounts for the contribution
from the notch edge tractions.

For the first component of JkR �i.e., J1R� under the special con-
dition corresponding to a crack �i.e., �=0� with straight and
traction-free crack surfaces, the last term on the right-hand side of
Eq. �13� vanishes. The integration then reduces to the conven-
tional J1-integral for crack problems. In such a case, the value of
integration remains unchanged along any arbitrarily chosen outer
contour 
o and this property is the well-known path-
independence. However, for the general condition when ��0
with curved and stressed notch edges, the idea of path-
independence for both J1R and J2R does not hold in the same
manner. As a matter of fact, the concept needs to be modified by
including the extra line integrals along the curved notch edges C1
and C2. Note that the outer contour 
o can be arbitrarily chosen,
except for the requirements to be inside the body, outside the
cutoff radius R, and contain no other singularity in it. Such a
concept, where C1 and C2 need to be included in the integration,
has also been presented by Chen and Lu �18� for problems con-
taining a V-shaped blunt notch.

Although the remote path 
o can be chosen arbitrarily, the extra
line segments C1 and C2 should both be terminated in the near-tip
region. With these portions of line integrals, the asymptotic sin-
gular behavior is thus inevitably involved in the calculation. Cau-
tious investigation for the numerical results is therefore necessary.

5 Numerical Examples
Three numerical example problems are presented in the follow-

ing two subsections. In the first subsection, a notched specimen
with straight and traction-free notch edges is considered. In the
second subsection, we consider a notched specimen with curved
and pressurized notch edges. These example problems are ana-
lyzed by using finite elements. Quadratic finite elements are used
for displacement interpolation in the calculation. No particular
singular element is used throughout the study.

5.1 Straight and Traction-Free Notched Specimen. The
feasibility of JkR for a notch-tip with straight and traction-free
edges has been demonstrated in the authors’ previous work �9�.
The aim of the following problem is thus to illustrate the numeri-
cal feature of JkR and, also, for later comparison with the results
presented in the following subsection.

0 .5 1
0

0.6

1.2

β π/

a(β)
b(β)

c(β)

Fig. 3 The variations of a, b, and c with respect to �
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5.1.1 Problem 1. In this example problem, we consider a
plane strain elastic specimen containing a central wedge-shaped
defect and is subjected to combined loads �� ,��, as shown in Fig.
4. The length of the defect 2l is relatively small compared with the
size of the specimen so that the effect due to finite width can be
neglected. Three instances of different notch angles �with � equal
to � /4, � /2, and 3� /4, respectively� are taken. Two different
loading conditions are considered, i.e., �Case �i�� a mixed-mode
load with �� ,��= �30,−20� kPa �Case �ii�� and a Mode I load with
�� ,��= �30,0� kPa.

The feature for the solutioins of JkR with respect to different
selections of cutoff radius R is examined. In order to properly
characterize the near-tip behavior, it is necessary that R be taken
small enough to be inside the zone of dominance of the singular
solution. Furthermore, to effectively illustrate the variation in JkR
with respect to R, the solution at Ro=0.25�10−3l is �arbitrarily�
chosen as a reference. The normalized solutions of JkR /JkRo for
loading cases �i� and �ii� are depicted as functions of the scaled
cutoff radius R /2l, as shown in Figs. 5 and 6, respectively. Note
that the results of J2R for Case �ii� are not included in Fig. 6 in that
they vanish under Mode I loading.

The asymptotic slope of each curve extracted from the numeri-
cal fields, along with the analytical solutions for the order of the
leading terms J1R and J2R �as addressed in Eqs. �11� and �12��, are
listed in Table 1 for loading case �i�. We observe that the com-
puted results for the slope of ln�J2R� appear to be well consistent
with the values of �1+�2+1, with the errors remaining under 3%.
On the other hand, substantial deviations between either 2�1+1 or
2�2+1 and the results of ln�J1R� are observed for �=� /4 and � /2
because the asymptotic solution of J1R is governed by the appear-
ance of both r2�1+1 and r2�2+1 under the mixed-mode loads. Nev-
ertheless, the influence of r2�2+1 becomes less significant when �
increases so that the slope of ln�J1R� appears to be closer to the
value of 2�1+1, as is evident in the case of �=3� /4. As to
loading case �ii�, the asymptotic slope of each curve, along with
the analytical solutions for the order of the leading term J1R, are
listed in Table 2. As shown, the numerical results are well com-
patible with the analytical values.

For problems with split singularities �i.e., the stronger and the
weaker singularities�, it is always necessary to investigate the pro-

portions and the effects of both singular terms. To this end, a
dimensionless parameter termed the “local mode mixity” � was
defined as

� = −
KII

KI
	 r

2l

�2−�1

�14�

The above parameter was originally proposed for the condition
with a crack at a bimaterial interface �19�. Here, in order to char-
acterize the proportion of the two modes for the notch problem,
the associated local mode mixity for loading case �i� is evaluated
and the variations of ��� with respect to r /2l is shown in Fig. 7.
By observing the results from the three notch angles �i.e., �=0,
� /4, and � /2� under the same loading condition, it is indicated

wedge-shaped defect
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Fig. 4 An elastic body containing a wedge-shaped defect
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Fig. 5 The variations of JkR /JkRo with respect to R /2l for
„� ,�…= „30,−20… kPa „loading case „i…, mixed-mode, Problem 1…
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Fig. 6 The variation of J1R /J1Ro with respect to R /2l for „� ,�…
= „30,0… kPa „loading case „ii…, Mode I, Problem 1…

Table 1 The asymptotic slopes of ln„JkR… for Problem 1 „load-
ing case „i…, mixed-mode…. Note that w=30 m, l=1.5 m, E
=207 GPa, �=0.3, and „� ,�…= „30,−20… kPa.

ln�J1R� ln�J2R� 2�1+1 2�2+1 �1+�2+1

�=� /4 0.04 0.169 0.01 0.319 0.165
�=� /2 0.102 0.465 0.089 0.817 0.453
�=3� /4 0.349 0.998 0.347 1.604 0.976
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that the weaker singularity makes less contribution in the near-tip
region for problems with larger notch angles. Also, such effect
becomes more significant as one moves closer to the notch-tip.

5.2 Curved and Pressurized Notched Specimen. In this
subsection, we consider a plane strain elastic specimen containing
a central curved wedge-shaped defect. The defect is of asymptotic
tangential angle � at its two tips and consists of circular arc seg-
ments elsewhere �Fig. 8�. Still, the span of the defect 2l is rela-
tively small compared with the size of the specimen. The speci-
men is subjected to remote combined loads �� ,��, as well as
pressure p along the edges of the wedge.

Two numerical problems are presented in this subsections. In
the first problem, the JkR-integrals are evaluated and the associ-

ated feature of the numerical results is investigated. Subsequently,
the mixed-mode SIFs are evaluated in the second example prob-
lem.

5.2.1 Problem 2.1: The JkR-integrals. This problem is pre-
sented to illustrate the computation procedure and to study the
behavior of the JkR-integrals. The study is organized as follows.
First, the property of the modified path-independence is examined.
Next, the feature of JkR with respect to different selections of R is
investigated. Subsequently, the asymptotic behavior of JkR is ob-
served. Finally, the size of the singular-dominant zone is exam-
ined. In the following calculations, three geometric instances of
different notch angles �with � equal to � /4, � /2, and 3� /4, re-
spectively� are considered. Also, two different loading conditions
are considered, i.e., �Case �iii�� a mixed-mode load with
�� ,� , p�= �30,−20,10� kPa and �Case �iv�� a Mode I load with
�� ,� , p�= �30,0 ,10� kPa. The specimen is analyzed by using the
finite element representation �e.g., of �=� /2� shown in Fig. 9�a�.
The discretized model is progressively refined as the elements
approaching the notch-tip O. Details of the local mesh in the
vicinity of the near-tip region is shown in Fig. 9�b�.

To demonstrate the property of modified path-independence,
three integration paths, each enclosing different region of the
above finite element mesh, are defined in the calculation. The
associated exterior contours 
o’s of these paths �for the instance

Table 2 The asymptotic slopes of ln„J1R… for Problem 1 „load-
ing case „ii…, Mode I…. Note that w=30 m, l=1.5 m, E
=207 GPa, �=0.3, „� ,�…= „30,0… kPa.

ln�J1R� 2�1+1

�=� /4 0.009 0.01
�=� /2 0.088 0.089
�=3� /4 0.351 0.347
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0

-2

-3 β= /4π

β= /2π

β = 0

ln(r/2 )l

ln
(|

|)
η
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Fig. 7 The variations in local mode mixity � with respect to
r /2l for „� ,�…= „30,−20… kPa „loading case „i…, mixed-mode,
Problem 1…
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Fig. 8 A homogeneous elastic body containing a curved
wedge-shaped and pressurized defect

Fig. 9 „a… The finite element model „of �=� /2… for the speci-
men in Fig. 8 and „b… the local finite element mesh in the near-
tip area
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of, e.g., �=� /2� are depicted in Fig. 10. As illustrated in Eq. �13�,
the calculation consists of two parts, including the integrations
along 
o and the portions of the curved notch edges C1+C2. The
results of each part for R= �1.32�10−2l� m are shown in Table 3
�load case �iii�� and Table 4 �load case �iv��, respectively. We
observe that the integration along C1+C2 makes rather significant
contribution to the computation and thus accounts for the “modi-
fied” sense of path-independence. Note that, while both 
o and
C1+C2 yield finite-valued results in their separate integration un-
der Mode I loading �Case �iv��, the solutions for J2R �i.e., the

summation of both� are vanishingly small, as anticipated. As a
summary, the finite element calculation from different paths, in
general, yields very similar results of JkR. Note that although the
formulation is verified to be analytically path-independent in the
modified sense, slight deviations among the results are observed
because the equilibrium state is satisfied only weakly in the finite
element computation.

Next, the behavior of JkR with respect to various values of R is
examined. Again, by arbitrarily choosing the solution with respect
to Ro�=0.25�10−3l� as the reference, the normalized results of
JkR /JkRo for loading cases �iii� and �iv� are depicted as functions
of the scaled cutoff radius R /2l and are shown in Figs. 11 and 12,
respectively. Still, the results of J2R for Case �iv� are not included
in Fig. 12 in that they vanish under Mode I loading.

The asymptotic slope for each curve in Fig. 11 �i.e., loading
case �iii��, along with the analytical solutions for the order of the
leading terms J1R and J2R, are listed in Table 5. Still, the computed
results for the slope of ln�J2R� appear to be well consistent with
the values of �1+�2+1, with the errors remaining under 1.5%. On
the other hand, the results for ln�J1R� are deviated from 2�1+1 for
�=� /4 and � /2 due to the appearance of both r2�1+1 and r2�2+1 in
the asymptotic solution under mixed-mode loads. The influence of
r2�2+1 becomes less significant when � increases so that the slope
of ln�J1R� appears to be closer to the value of 2�1+1, as is evident
in the case of �=3� /4. As to loading case �iv�, the asymptotic
slope of each curve, along with the analytical solutions for the
order of the leading term J1R, are listed in Table 6. The numerical
results are well compatible with the analytical values.

Finally, the size of the singular-dominant zone under different
geometric and loading conditions is observed. For loading case
�iii�, the curves in Fig. 11 appear to remain linear in the region
within 0.5% of the defect span and the values of the asymptotic

Fig. 10 Three integration paths for the JkR-integrals for the
instance of �=� /2

Table 3 Path-independence for Problem 2.1 „unit: 10−2 Pa m… „Case „iii…, mixed-mode…. Note
that w=30 m, l=1.5 m, R / l=1.32Ã10−2, E=207 GPa, and �=0.3.


o
+C1+C2

=J1R 
o
+C1+C2

=J2R
�Eq. �13��

�=� /4 Path 1 3.472 0.157 3.629 1.605 0.004 1.609
Path 2 3.677 −0.065 3.612 2.144 −0.522 1.622
Path 3 3.465 0.150 3.615 1.611 0.003 1.614

�=� /2 Path 1 3.841 −1.090 2.751 0.895 −0.620 0.275
Path 2 3.236 −0.445 2.791 1.184 −0.912 0.272
Path 3 3.760 −1.000 2.760 0.840 −0.562 0.278

�=3� /4 Path 1 4.141 −3.034 1.107 2.013 −1.964 0.049
Path 2 2.723 −1.628 1.095 0.612 −0.567 0.045
Path 3 3.562 −2.460 1.102 1.397 −1.351 0.046

Table 4 Path-independence for Problem 2.1 „unit: 10−2 Pa m… „Case „iv…, Mode I…. Note that
w=30 m, l=1.5 m, R / l=1.32Ã10−2, E=207 GPa, and �=0.3.


o
+C1+C2

=J1R 
o
+C1+C2

=J2R
�Eq. �13��

�=� /4 Path 1 2.475 0.803 3.278 0.004 −0.004 0.000
Path 2 2.982 0.287 3.269 0.004 −0.003 0.001
Path 3 2.520 0.752 3.272 0.004 −0.004 0.000

�=� /2 Path 1 2.608 0.004 2.612 0.282 −0.274 0.008
Path 2 2.907 −0.235 2.672 −0.068 0.080 0.012
Path 3 2.612 0.023 2.635 0.284 −0.274 0.010

�=3� /4 Path 1 2.872 −1.924 0.948 0.061 −0.060 0.001
Path 2 2.460 −1.519 0.941 0.026 −0.025 0.001
Path 3 2.811 −1.868 0.943 0.060 −0.060 0.000
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slope are accurately calculated, as discussed previously. The nu-
merical results for JkR in this region are thus well consistent with
the asymptotic solutions shown in Eqs. �11� and �12�. Such ob-
served feature indicates that, in this case, the extent of the
singular-dominant zone is within 0.5% of the defect span. Simi-
larly, for loading case �iv�, the linear portions of the curves in Fig.
12 indicate that the asymptotic singular region is within 0.8% of
the defect span. On the other hand, for straight and traction-free
notch edges �Problem 1�, the singular-dominant region extends up
to 5% of the defect span �Figs. 5 and 6�. From the above results,
it is observed that the size of the singular zone is significantly
affected by the appearance of curved edges and the edge tractions.
As a summary, it is demonstrated that, by cautionsly investigating

the values of JkR resulting from different choices of R, the extent
of notch-tip singularity for any particular geometry can be ratio-
nally and effectively characterized.

Since the concept of the JkR-integrals for notches with curved
and pressurized edges is originally presented in this paper, there is
no analytical or numerical solution with which a direct test of the
above computation scheme for the contour integrals can be carried
out. Nevertheless, the numerical results show that the integrals are
path-independent �in a modified sense�. Also, the computed values
of the order of their leading terms in the asymptotic near-tip re-
gion are well consistent with those of the analytical solutions. The
feasibility of the proposed integrals can thus be appropriately
demonstrated by the observation and comparison.

5.2.2 Problem 2.2: The Mixed-Mode SIFs. In this problem, we
consider again the plane strain notched specimen with curved and
pressurized notch edges and subjected to a combined load, as
shown in Fig. 8. The mixed-mode SIFs, �KI�� and �KII�� can be
determined by the use of Eqs. �11� and �12� provided that the
JkR-integrals are properly evaluated.

Since the cutoff radius R for JkR can be arbitrarily chosen, it is
therefore anticipated that the resulting values of SIFs be indepen-
dent of the selection of R. To demonstrate such a feature, we
herein choose a number of different values of R, evaluate the
corresponding JkR-integrals, and then calculate the corresponding
mixed-mode SIFs. Note that from the results in Problem 2.1 it is
suggested that the scale of R be within the range of 0.01l in order
for accurate solutions of the SIFs. The numerical results for the
SIFs associated with various values of R for loading case �iii� are
listed in Table 7. The results of �KI�� and �KII�� appear to be
almost invariant with respect to different selections of R, with
maximum deviation under 3%, as expected.

It is interesting to note that, in Table 7, the value of �KII�3�/4 is
not available numerically due to the appearance of the regular
leading term r1.604. Such behavior has also been previously illus-
trated by the vanishingly small values of J2R listed in Table 3. As
a matter of fact, since the asymptotic Mode II stress component is
relatively negligible when the notch angle is greater than 0.57�,
the solution for �KII�� is therefore rather insignificant in such
cases. Also listed in Table 7 are the corresponding �absolute val-
ues of� local mode mixity ���. From the numerical results, it is
observed that the weaker singularity makes less contribution as
the notch angle increases from � /4 to � /2 and finally vanishes
for �=3� /4, as anticipated. Still, such effect is more significant
as one moving closer to the notch-tip.

As to loading case �iv�, the values of the Mode I SIFs �KI�� are
shown in Table 8. The numerical results appear to be almost in-
variant with respect to different selections of R. Also, they are
well consistent with the results of �KI��, evaluated from the
mixed-mode solutions shown in Table 7, as expected.

Although there is no analytical solution for direct verification of
the above calculation, the validity of the formulation for the SIFs
can nevertheless be alternatively addressed by observing the fol-
lowing two points. First, the numerical results of �KI�� and �KII��

appear to be invariant with respect to different selections of the
cutoff radius R, which is consistent with the concept indicated by
Eqs. �11� and �12�. Also, the computed values of �KI�� under
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Fig. 11 The variations of JkR /JkRo with respect to R /2l for
„� ,� ,p…= „30,−20,10… kPa „loading case „iii…, mixed-mode,
Problem 2.1…
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Fig. 12 The variation of J1R /J1Ro with respect to R /2l for
„� ,� ,p…= „30,0,10… kPa

Table 5 The asymptotic slopes of ln„JkR… for Problem 2.1
„loading case „iii…, mixed-mode…. Note that w=30 m, l=1.5 m,
E=207 GPa, �=0.3, and „� ,� ,p…= „30,−20,10… kPa.

ln�J1R� ln�J2R� 2�1+1 2�2+1 �1+�2+1

�=� /4 0.051 0.167 0.01 0.319 0.165
�=� /2 0.147 0.459 0.089 0.817 0.453
�=3� /4 0.343 0.966 0.347 1.604 0.976

Table 6 The asymptotic slopes of ln„J1R… for Problem 2.1
„loading case „iv…, mode-I…. Note that w=30 m, l=1.5 m, E
=207 GPa, �=0.3, and „� ,� ,p…= „30,0,10… kPa.

ln�J1R� 2�1+1

�=� /4 0.009 0.01
�=� /2 0.085 0.089
�=3� /4 0.343 0.347
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loading case �iii� �mixed-mode� are well consistent with those
under Case �iv� �Mode I�. Such agreement is analytically sup-
ported by the mixed-mode feature described by Eqs. �2�–�4�.

As an aside, it is important to note that the mixed-mode
asymptotic singular stress field cannot be completely described by
only using the SIFs in that the Mode I and Mode II stresses are
governed by different orders of singularity and dependent on the
tangential notch angle. A detailed structure of the singular stress
field is therefore required in engineering fracture analysis. This
can be achieved by substituting the SIFs into Eqs. �2�–�4�, with
which the asymptotic singular stress field can be appropriately
calculated.

6 Conclusions
A numerical procedure is presented for the evaluation of the

mixed-mode SIFs, i.e., �KI�� and �KII��, for a sharp notch-tip with
curved edges and subjected to surface tractions along the notch
edges. This actually is a generalized extension of the earlier work
conducted by the authors on the corresponding notched problems
with straight and traction-free notch edges. In this approach, a pair
of contour integrals JkR are defined by modifying the conventional
Jk-integrals with the introduction of arbitrarily selected cutoff ra-
dius R in the near-tip area. Furthermore, the relation between JkR
and the SIFs is analytically established and expressed as functions
of the asymptotic tangential notch angle �. Once the JkR-integrals
are evaluated, the SIFs and, consequently, the near-tip mixed-
mode singular stress field can then be completely determined.

The JkR-integrals are shown to be path-independent in a modi-
fied sense. That is, the integratioin can be performed along an
arbitrarily chosen outer contour, along with the curve segments on
the notch edges. With this property, accurate solutions can be
achieved without using any particular numerical treatment. The
feasibility of the presented approach is demonstrated in the nu-
merical examples. As a matter of fact, it is verified both analyti-
cally and numerically that the results of �KI�� and �KII�� are ac-
tually insensitive to different selections of cutoff radius R. Also,
no a priori auxiliary solutions are required in the formulation.
With the above superiorities, JkR thus appear to be efficient as a
computational scheme in practice.

As an aside, it is important to note that the extent of the
singular-dominant zone is significantly affected by the appearance
of curved edges and the edge tractions. Such a feature can be
effectively characterized by proper use of the JkR-integrals
through detailed investigations of the computed asymptotic be-
havior.
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Appendix
For the geometric configuration containing a sharp notch-tip

�Fig. 1�, the near-tip stress field can be formulated by adopting a
specific airy stress function �1� and expressed in terms of expan-
sions as follows

�r�r,�;�� = �
i=1

�

r�i−1�d2Fi���
d�2 + ��i + 1�Fi���� �A1�

���r,�;�� = �
i=1

�

�i��i + 1�r�i−1Fi��� �A2�

�r��r,��;� = �
i=1

�

− �ir
�i−1dFi���

d�
�A3�

where �i is the order of the ith term remaining to be solved, and
Fi��� is the ith angular function satifying the following compat-
ibility equation:

d4Fi���
d�4 + 2��i

2 + 1�
d2Fi���

d�2 + ��i
2 − 1�2Fi��� = 0 �A4�

Note that, in practice, truncated expressions of the above stress
functions are usually utilized by taking, say, up to N terms of the
expansion.

Due to the presence of the traction on the notch edges, the
near-tip stresses thus appear to consist of the homogeneous and
the particular parts, i.e., �h and �p. Note that �h and �p can be
expressed in terms of the same form of stress functions, yet with
different combinations of expansions. For �h, as shown in Eqs.
�2�–�4�, they were obtained by solving Eqs. �A1�–�A3� with the
traction-free boundary condition on the notch edges �1�. As to �p,
on the other hand, we consider the traction vector tn on the notch
edges, i.e.,

Table 8 The results of „KI…� versus R „Case „iv…, Mode I… „unit:
104 Pa m−�1 for „KI…�…. Note that w=30 m, l=1.5 m, E
=207 GPa, �=0.3, and „� ,� ,p…= „30,0,10… kPa.

R /2l�10−3� 0.294 0.713 1.722 4.15

�=� /4 �KI��/4 8.543 8.494 8.550 8.522
�=� /2 �KI��/2 8.826 8.812 8.918 8.854
�=3� /4 �KI�3�/4 10.83 11.07 10.98 10.87

Table 7 The results of „KI…� and „KII…� versus R „Case „iii…, mixed-mode… „unit: 104 Pa m−�1 for
„KI…�, 104 Pa m−�2 for „KII…�…. Note that w=30 m, l=1.5 m, E=207 GPa, �=0.3, and „� ,� ,p…
= „30,−20,10… kPa.

R /2l�10−3� 0.294 0.713 1.722 4.15

�=� /4 �KI��/4 8.557 8.564 8.536 8.501
�KII��/4 −6.176 −6.202 −6.240 −6.222

��� 0.205 0.236 0.273 0.314

�=� /2 �KI��/2 8.861 8.861 8.890 8.904
�KII��/2 −8.508 −8.586 −8.409 −8.458

��� 0.050 0.069 0.093 0.129

�=3� /4 �KI�3�/4 11.10 11.20 10.93 11.10
�KII�3�/4 – – – –

��� – – – –
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�p�r,�;����=���−�/2� · n = tn�r� �A5�

By comparing Eqs. �A1�–�A3� with the prescribed boundary con-
dition �A5�, it can be seen that solutions of �p exist only if �i
	1 �for i=1,2 , . . . ,N� in that tn is of finite value. This, as a
consequnce, leads to a finite-valued solution of �p.
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Identification of Linear Structural
Systems With a Limited Set of
Input-Output Measurements
In this paper, a methodology is presented for the identification of the complete mass,
damping, and stiffness matrices of a dynamical system using a limited number of time
histories of the input excitation and of the response output. Usually, in this type of inverse
problems, the common assumption is that the excitation and the response are recorded at
a sufficiently large number of locations so that the full-order mass, damping, and stiffness
matrices can be estimated. However, in most applications, an incomplete set of recorded
time histories is available and this impairs the possibility of a complete identification of
a second-order model. In this proposed approach, all the complex eigenvectors are cor-
rectly identified at the instrumented locations (either at a sensor or at an actuator loca-
tion). The remaining eigenvector components are instead obtained through a nonlinear
least-squares optimization process that minimizes the output error between the measured
and predicted responses at the instrumented locations. The effectiveness of this approach
is shown through numerical examples and issues related to its robustness to noise pol-
luted measurements and to uniqueness of the solution are addressed.
�DOI: 10.1115/1.3002336�

Keywords: identification, reduced order models, damage detection

1 Introduction

In recent years, there has been an increasing interest in the civil
and mechanical engineering communities in methodologies that
are capable of detecting and quantifying structural damage in ar-
eas of a structure that are not easily accessible to engineers. A
variety of nondestructive techniques has been successfully devel-
oped, thanks to technological advancements in computer technol-
ogy, in signal processing, and in materials. However, the vast
majority of these techniques focuses on the individual structural
element, e.g., a beam or a column. On the contrary, damage iden-
tification techniques and methodologies that have a “global” per-
spective are still in the development phase, trying to overcome
limitations imposed by computational and financial constraints.

In these global approaches to damage detection, one key factor
is the reliability of the structural model used. Comparing two
reliable models that correspond to the undamaged and damaged
configurations of a structure can provide a wealth of useful infor-
mation for accurately determining the location and amount of
structural damage. Some of the noteworthy efforts in the identifi-
cation of linear structural systems include the works by Agbabian
et al. �1�, Safak �2,3�, Udwadia �4�, Beck and Katafygiotis �5,6�,
Luş et al. �7�, Alvin et al. �8,9�, Farhat et al. �10�, and Doebling
et al. �11�. Although they have the common goal of identifying a
mathematical/physical model of the system, all these works differ
from the type of model they identify and from the methodology
used in the identification process.

One way of determining mathematical �not necessarily physi-
cal� models of the structure is to use dynamic measurements of
the structural input and/or output to identify a “black box” model
that properly maps inputs and outputs. In mechanical and aero-
space applications, it is quite common to use a “first-order” rep-
resentation of a dynamic system. However, although it is quite

popular in control-type applications, this type of representation of
a system, being a black box type, is rather inconvenient for dam-
age identification purposes.

For identifying areas of structural damage, it is more conve-
nient to work with “second-order” models where the system’s
dynamics is represented by a set of second-order differential equa-
tions whose coefficients are physical parameters, such as mass,
damping, and stiffness. However, the identification of such struc-
tural parameters is much more cumbersome than the identification
of first-order models. A common trend among the most successful
methodologies for the identification of the mass, damping, and
stiffness characteristics of a structure is to start from an identified
first-order representation of the system and, through proper trans-
formations, to obtain the physical structural parameters �7–9,12�.
The drawback of this type of approaches is that these methodolo-
gies require a full set of instrumentation �a sensor and/or an ac-
tuator on each degree of freedom� for identifying the mass, damp-
ing, and stiffness matrices of the structural model. However, in
real life applications, even complex structures are usually instru-
mented with only few sensors and this impairs the complete iden-
tification of structural properties. In the case of an incomplete set
of measurements, only limited information about the distribution
of the structural stiffness, mass, and damping can be retrieved
�13�. In addition, dealing with a limited set of input-output mea-
surements raises issues related to the uniqueness of the identified
solution �14–17�.

In this paper, the results of a study focused on determining the
mass, damping, and stiffness matrices for systems with few input/
output measurements are presented. The success of the identifica-
tion is closely related to the complexity of the adopted model.
Considering different levels of model complexity and assuming
that the identification problem has a unique solution, a satisfactory
approximation of the second-order model can be obtained through
a nonlinear optimization process that takes into account the geo-
metrical constraints imposed by the different structural assump-
tions.

Contributed by the Applied Mechanics Division of ASME for publication in the
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2 First-Order Representation of a System
Let us consider an N degree-of-freedom model of a structural

system whose equations of motion can be written as

Mq̈�t� + Ccq̇�t� + Kq�t� = Lu�t� �1�

where M, Cc, and K are the N�N mass, damping, and stiffness
matrices of the system, respectively, and q�t� is the N�1 vector
of the generalized nodal displacements. The symbol �˙� indicates
the differentiation with respect to time. The vector u�t� indicates
the r�1 input vector containing the r time histories of the exter-
nal excitations, while the matrix L represents the N�r input ma-
trix.

By introducing the state vector s�t�= �q�t�Tq̇�t�T�T and indicat-
ing with y�t� the m�1 output vector containing the m time his-
tories of the output measurements, Eq. �1� can be transformed to
the first-order canonical form:

ṡ�t� = As�t� + Bu�t�

y�t� = Cs�t� + Du�t� �2�

where the system matrix A and the input matrix B are given by

A = � 0 I

− M−1K − M−1Cc
�, B = � 0

M−1L
� �3�

The output matrix C and the direct transition matrix D are matri-
ces of dimensions m�2N and m�r and depend on the types of
measurement available �displacement, velocities, or accelera-
tions�. By operating transformations on the state vector s, it is
possible to obtain an infinite number of sets of matrices A, B, C,
and D that, although different from those in Eq. �3�, still correctly
represent the dynamics of the system.

Assuming that the system is controllable and observable, a first-
order representation of the system �a set of matrices A, B, C, and
D� can be obtained just using a set of input and corresponding
output time histories, independent of the number of degrees-of-
freedom of the structural model. Among the most popular tech-
niques, eigensystem realization algorithm with data correlation
�ERA/DC� and the observer Kalman filter identification �OKID�
provide very reliable representation of the system’s dynamics
even with few input/output time histories.

3 Identification of Mass, Damping, and Stiffness
Matrices

Identifying the full-order mass, damping, and stiffness matrices
of a system, M, Cc, and K, is quite challenging. One approach to
tackle this problem is called “model updating” in which an initial
model of the structure �usually a finite element model� is created
and its describing parameters are updated so to match, for a given
input, the output data as closely as possible. Model updating
methodologies, although exempted from the limitation of one
sensor/actuator per degree-of-freedom, are quite time consuming
and face issues linked to the uniqueness of the identified model.

An alternative approach to determine the full-order mass,
damping, and stiffness matrices is to start from the identified first-
order state space model of the structure and derive, through a set
of transformations, the corresponding mass, damping, and stiff-
ness matrices. One of these methodologies �12� determines such
matrices using the complex eigenvalues and eigenvectors of the
associated damped eigenvalue problem:

��i
2M + �iCc + K��i = 0 �4�

where �i and �i�i=1,2 , . . . ,2N� represent the ith complex eigen-
value and the associated complex eigenvector, respectively. The
complex eigenvectors can be reordered in an eigenvector matrix
�= ��1�2 . . .�2N� of dimension N�2N, while the corresponding
complex eigenvalues �i�i=1,2 , . . . ,2N� are rearranged in a diag-
onal matrix � of dimension 2N�2N. These eigenvalues and

eigenvectors can be obtained by applying proper transformations
to the identified state, and input and output matrices of the first-
order model.

Using proper normalization for the complex eigenvalues �12�,
the mass, damping, and stiffness matrices of the structural system
can be expressed as functions of its complex eigenvalues and
eigenvectors:

M = ����T�−1, K = − ���−1�T�−1, Cc = − M��2�TM

�5�

with the eigenvectors satisfying the following condition:

��T = 0N�N �6�
If the structural system has a sufficient number of sensors and

actuators �m+r=N+1�, then the full eigenvector matrix � of the
system can determined by using the collocation requirement and
the information at either sensor or actuator locations �12�. How-
ever, in real life applications, a structural system is usually insuf-
ficiently instrumented with some degrees-of-freedom deficient of
both sensors and actuators �m+r�N+1�. Using either informa-
tion from sensor or actuator locations and the collocation require-
ment, only the components of the vibrational modes at the mea-
sured locations can be uniquely determined. Using the m+r
available input/output data with one colocated sensor-actuator
pair, only n=m+r−1 rows of the complex eigenvector matrix �
can be determined, while the remaining p=N−n rows remain un-
known �12,13�. By rearranging the known ��kn� and unknown
��un� components, the eigenvector matrix � can be partitioned
into a known submatrix �1=�kn of dimension n�2N and an un-
known submatrix �2=�un of dimension p�2N:

� = ��n�2N
kn

�p�2N
un � = ��1

�2
� �7�

The superscripts “kn” and “un” indicate whether, at that degree
of freedom, a sensor or an actuator is present or not, implying that
the corresponding modal quantity can be identified �known� or not
�unknown�.

Starting from the general expression of the mass, damping, and
stiffness matrices in terms of the complex eigenvectors �, as
shown in Eq. �5�, we can express these matrices in partitioned
forms as functions of the known and unknown partitions of the
eigenvector matrix. For example, the full-order stiffness matrix K
can be expressed as

K = − ���−1�T�−1 = − ��1�−1�1
T �1�−1�2

T

�2�−1�1
T �2�−1�2

T �−1

= �K11 K12

K21 K22
�
�8�

with each subpartition given by the following expressions:

K11 = − ���1�−1�1
T� − ��1�−1�2

T���2�−1�2
T�−1��2�−1�1

T��−1

K22 = − ���2�−1�2
T� − ��2�−1�1

T���1�−1�1
T�−1��1�−1�2

T��−1

K12 = − K11
−1��1�−1�2

T���2�−1�2
T�−1

K21 = − K22
−1��2�−1�1

T���1�−1�1
T�−1 �9�

In the case of limited sensor/actuator capabilities, only the
known part ��1� of the eigenvector matrix is available and this
will impair the use of Eq. �9�.

Using only the known partition of the complex eigenvector ma-
trix, a “reduced-order” form for the mass, stiffness, and damping
matrices of the structural system of dimension n�n can be ex-
pressed as

Mr = ��1��1
T�−1 = M11 − M12M22

−1M21 �10�

Kr = − ��1�−1�1
T�−1 = K11 − K12K22

−1K21 �11�
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Ccr = − Mr�1�2�1
TMr �12�

The use of such “reduced” models of the structural system is
quite limited. In fact, they cannot be used to represent the dy-
namic characteristics of the structural system: The natural fre-
quencies obtained from the reduced model do not match the ones
from the real system. In addition, such models cannot be used to
predict the structural response to future excitation since they rep-
resent smaller order systems that have been obtained by minimiz-
ing, at few locations, the output error for a given �past� excitation.
However, they can provide indications on the locations where
damage has occurred, although quantifying the damage with such
reduced models is quite difficult, if not impossible.

To overcome these limitations imposed by the use of reduced-
order models, an attempt is made to expand reduced second-order
models of a system, obtained from a limited number of instrumen-
tations, to “full” second-order models, which preserve most of the
system information such as the input/output relationships at the
instrumented locations and the normalized system eigenvalues.
This is accomplished by determining the unknown components of
the complex eigenvector matrix, �2, through an optimization al-
gorithm that minimizes the difference between the measured and
simulated data at the sensor locations under a set of constraints
imposed on the variables to update.

4 Optimization Algorithm
The aim of this optimization process is to determine the 2pN

parameters of the vector �2 ��ij
un �i=1,2 , . . . , p ; j=1,2 , . . . ,2N��

that minimize the objective function J��2�, representing the error
between the measured and predicted outputs at the instrumented
locations, under a set of linear and nonlinear constraints imposed
by the type of structural models to be identified. Thus, this opti-
mization can be expressed in a convenient mathematical form as

min
�2�R2pN

J��2� =
1

2�
h=ti

tf

�ŷ�h,�2� − y�h��T�ŷ�h,�2� − y�h�� �13�

with the conditions

cl��2� = 0, l = 1,2, . . . ,m�

cl��2� � 0, l = m� + 1, . . . ,s �14�

being ŷ�h ,�2� and y�h� the predicted and the measured outputs at
the time step h, with the time index h varying from an initial time
ti to a final time tf. The conditions cl�l=1,2 , . . . ,s� represent
equality/inequality constraints of the nonlinear optimization re-
lated to either �1� the conditions required by the eigenvector nor-
malization process, �2� special geometrical properties characteriz-
ing the system, or �3� to the physical meanings of the system
parameters �e.g., floor stiffness cannot have negative values�.

Any point �2 that satisfies all the constraints ck is said to be
feasible. The set of all the feasible points is termed the feasible
region or solution space. Considering now that �2, as defined in
Eq. �7�, contains 2pN undetermined components, then the initial
dimension of its solution space, before any constraint is applied, is
2pN. The introduction of any equality constraint will reduce this
initial dimension. For details, see the work by Yu �17�.

5 Expanding Reduced Order Models to “Full Order”
For a structural engineer, having a full order representation of

the system, represented by the complete mass, damping, and stiff-
ness matrices, is quite useful. In fact, such a representation can be
used for predicting the structural response to future excitations at
all possible locations in the structure as well as for locating and
quantifying the possible structural damage �e.g., by comparing the
structural stiffness�. This is not possible using the reduced-order
models of the structure: In fact, such models cannot be used for

predicting the structural response to future excitation even at in-
strumented locations, while locations and amount of structural
damage can only be vaguely characterized �13�.

Reduced-order models of structural systems can be grouped
into different categories on the basis of different structural con-
straints. According to the different forms of the mass, damping,
and stiffness matrices, five representative scenarios have been de-
fined and will be discussed separately. For all these scenarios, a
common set of constraints can be defined expressing condition �6�
in terms of �1 and �2 as

��T = 0N�N = ��1�1
T �1�2

T

�2�1
T �2�2

T � = �0n�n 0n�p

0p�n 0p�p
� �15�

While the above constraint is automatically satisfied for the
known part �1, Eq. �15� provides two additional sets of conditions
that can be used for the determination of the unknown part �2.
Such conditions are represented by the following sets of linear and
nonlinear equations:

�1�2
T = 0n�p, �2�2

T = 0p�p �16�

5.1 General M, Cc, and K: Case I. If the system can only be
modeled with general �nondiagonal or block-diagonal� mass,
damping, and stiffness matrices, then very little can be done in
expanding the initial reduced-order model. In this case, the only
constraint conditions that can be imposed on �2 come from the
above normalization equations, Eq. �15�. Hence Eq. �16� will pro-
vide n� p and p� p equality constraints, respectively. However,
due to symmetry, only the upper portion of �2�2

T provides inde-
pendent conditions and this reduces the total number of con-
straints to �p /2��2N− p+1�. In this case, the dimension of the
solution space �SSDOF� becomes �p /2��N+ p−1�, as reported in
Table 1. For this type of structural models, the missing compo-
nents of the eigenvector matrix �2 and, consequently, the real
mass normalized eigenvectors and the associated natural frequen-
cies cannot be exactly identified, with serious consequences on the
accuracy of the identified model. The only subpartition matrices
that can be determined are Mr, Ccr, and Kr �Eqs. �10�–�12��,
which, however, are of limited use for identification and damage
detection purposes. In addition, although they reproduce the re-
corded structural output at the sensor locations quite closely, these
models cannot be used to predict the response of the system to
future excitation, even at the instrumented locations. The reason is
that the optimization identifies a model by minimizing the error
between the measured output and the predicted output for a given
input. However, since the identified model does not represent the
dynamic characteristics of the real system, it cannot be expected
to provide accurate prediction of the structural behavior to a dif-
ferent input excitation.

5.2 Block Diagonal M With General Cc and K: Case II. If
we assume that the structural system can be represented by a
block-diagonal mass matrix �an assumption widely used in me-
chanical and civil applications�, then additional n� p constraints
of the type �1��2=0n�p can be imposed. Thus, the total number

Table 1 Number of total constraints and dimension of solution
space for the different representative scenarios of reduced or-
der systems

Constraints/cases
No. of

Unknowns
No. of

Constraints
No. of

Solution Space

Case I 2pN p
2 �2N− p+1� p

2 �2N+ p−1�
Case II 2pN p

2 �4N−3p+1� p
2 �3p−1�

Case III 2pN p
2 �4N−3p+1� p

2 �3p−1�
Case IV 2pN p�2N−1� p
Case V 2pN 2pN 0
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of constraints becomes �p /2��4N−3p+1� and the dimension of
the solution space reduces to �p /2��3p−1� �see Table 1�. It is
noteworthy that now the dimension of the solution space depends
only on the number of degrees-of-freedom that are not instru-
mented �p� and not on the total number of the system’s degrees-
of-freedom �N�.

In this case, the only subpartitions of the mass and damping
matrices related to the instrumented degrees-of-freedom, M11 and
Cc11, are exactly identified as

Mr = ��1��1
T�−1 = M11 �17�

Ccr = − M11�1�2�1
TM11 = Cc11 �18�

The remaining subpartitions of the full mass and damping ma-
trices as well as the complete stiffness matrix cannot be deter-
mined uniquely. Similarly to Case I, the retrieved full-order model
cannot be used for either response prediction or for damage as-
sessment.

5.3 Block-Diagonal M With the Assumption of Classical
Damping Cc: Case III. Introducing the assumption that the struc-
tural damping can be expressed as a function of the mass and
stiffness matrices leads to a further improvement in the identifi-
cation process. In fact, using proper normalization conditions for
the eigenvectors �18� �e.g., magnitudes of the real and the imagi-
nary parts of the complex eigenvectors are equal ��R����
= �J������ will allow us to introduce additional constraints and,
consequently, a substantial reduction in the number of unknown
parameters. After some simple derivations, it can be shown that
not only M11 and Cc11 are exactly determined �as in Case II� but
also that the subpartition of the stiffness matrix K11 becomes in-
dependent of the unknown �2 and so can be exactly identified.

The fact that the assumption of classical damping allows the
exact determination of subpartitions of the structural matrices re-
lated to the instrumented degrees-of-freedom is important for
damage identification purposes. In fact, if damage occurs at the
instrumented locations, the identified model will allow us to ex-
actly detect and quantify the structural damage. However, in terms
of structural response prediction, these identified models are still
not capable of accurately predicting the response to future excita-
tion.

5.4 Diagonal M With Tridiagonal Damping Cc and Stiff-
ness K: Case IV. If the system can be modeled with a diagonal
mass matrix and tridiagonal damping and stiffness matrices, the
identified full-order system shows some interesting characteris-
tics. This model represents systems that are composed of concen-
trated masses that are only connected to the adjacent ones with a
spring and a dashpot, with both ends connected to supports.

In this case, the assumption of diagonal mass matrix imposes
that the off-diagonal elements are equal to zero ��2��2

T

=diag	 
�. After accounting for the symmetry conditions, the total
number of constraints changes to p� �2N− p� �Table 1� and thus,
the solution space of �2 reduces to p2, again function only of the
number of uninstrumented degrees-of-freedom.

The assumption of tridiagonal K and Cc matrices provides ad-
ditional �N−1�� �N−2� independent equality constraints for the
solution space of �2. If the system has all but one unmeasured
coordinates, i.e., p= pmax=N−1, then all �N−1�� �N−2� “zero”
elements of K and Cc represent independent conditions since the
zero elements of the stiffness and damping matrices are indepen-
dent of each other. Then,

SSDOF = pmax
2 − �N − 1� � �N − 2� = �N − 1� = pmax �19�

In this case, the dimension of the solution space of �2 is re-
duced to N−1. The equivalence of these two numbers, pmax and
SSDOF, is not simply a coincidence but indicates a significant new
result. Since the eigenvector matrix �2 of dimension �N−1�

�2N needs to be full rank in rows �each row has at least one
unknown factor� and the solution space is N−1 �N−1 unknown
factors in total�, it can be concluded that the unknown part of the
identified complex eigenvector matrix contains, for each row, only
one undetermined factor �i, with i=1,2 , . . . ,N−1. This implies
that the exact �unknown� and the identified �determined through
optimization� components of the eigenvector matrices are related
by the following relationships:

�̂1 = �1�1, :�, �̂2 = �
�1�2�1, :�
�2�2�2, :�

. . .

�N−1�2�N − 1, :�
� �20�

where �1, �2 and �̂1, �̂2 are the exact and the identified �ˆ� parts
of the eigenvector matrix while �1 ,�2 , . . . ,��N−1� are the un-
known proportionality constants. While all the components of the
complex eigenvectors at the instrumented locations are correctly
identified, the identified components of the eigenvectors at the
noninstrumented locations are proportional to the exact values
through some unknown constants. At each degree-of-freedom, the
value of such a constant is the same for all the modes.

For the other cases where p� pmax, not all the conditions im-
posing zero elements of K and Cc are independent. There are only
p2− p independent new constraints because, among the total p2

conditions, the first p2− p ones imply that there is an unknown
factor �i �i=1,2 , . . . , p� at each unmeasured coordinate while the
remaining p conditions are 0��i=0. Therefore,

SSDOF = p2 − ��N − 1� � �N − 2� − p� = p �21�

which implies that the identified �̂1 and �̂2 are similar to the
corresponding ones in Eq. �20�.

�̂1 = �
�1�1, :�
�1�2, :�

. . .

�1�N − p, :�
�, �̂2 = �

�1�2�1, :�
�2�2�2, :�

. . .

�p�2�p, :�
� �22�

Using these identified eigenvectors, �̂1 and �̂2, in the construc-
tion of the mass, damping, and stiffness matrices of the full-order
models will lead to some interesting observations. The identified
full-order mass, damping, and stiffness matrices show that the
subpartitions corresponding to the instrumented degrees-of-
freedom are exactly identified while the subpartitions correspond-
ing to the unmeasured degrees-of-freedom are proportional to the
exact ones through the � coefficients. For example, the identified

full-order stiffness matrix, K̂, for an N degrees-of-freedom system
with only n=N− p instrumented ones can be expressed as

K̂ = − ��̂�−1�̂T�−1 = �K̂11K̂12

K̂21K̂22

�
= �

K11 �1
−1kn+1,2 . . . 0

�1
−1k2,n+1 ��1�1�−1kn+1,n+1 . . . 0

] ] ] ]

0 0 . . . ��p�p�−1kNN

� �23�

where K̂11=K11 is the n�n partition of the stiffness matrix re-
lated to the instrumented degrees-of-freedom �exactly identified�
while K̂12=K̂21

T and K̂22 are the identified n� p and p� p subpar-
titions of the stiffness matrix related to the unmeasured DOFs.
These two subpartitions differ from the correct ones because of
the proportionality constants �’s. Although the expanded mass
and stiffness matrices are different from the exact ones, it can be
proven that the system’s natural frequencies obtained from the
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identified matrices are identical to the exact ones. For the proof,
see Ref. �17�.

The effects of the � coefficients can also be shown in the esti-
mation of the system response. At measured locations, where all
the contributions of the various modes are exactly estimated, the
predicted response will be equal to the exact one while those
predicted at locations with neither a sensor nor an actuator are
proportional, through the same coefficients, to the exact ones:

ŷ = �ŷ1

ŷ2
�, ŷ1 = y1, ŷ2 = �

�1y2�1, :�
�2y2�2, :�

. . .

�py2�p, :�
� �24�

Unfortunately, in real cases, not having the exact response avail-
able impairs the estimation of the � parameters. However, al-
though these parameters remain unknown, it is still possible to use
the identified structural stiffness and mass matrices to obtain cor-
rect assessment of the structural damage �see Sec. 9�.

5.5 Shear-Type Structural Models: Case V. In many struc-
tural engineering applications, a common assumption is to con-
sider shear-type models of structures represented by concentrated
masses connected with the adjacent ones, with only one mass at
the end connected to a support. This type of models, defined
shear-type models, represents a special case of the previous tridi-
agonal systems �Fig. 1�. In this case, additional constraints can be
imposed by considering the following geometric relations for K
and Cc:

k�i−1�i + ki�i+1� = − kii, cc�i−1�i + cci�i+1� = − ccii, i = 2,3, . . . ,N − 1

k�i−1�i = − kii, cc�i−1�i = − ccii, i = N �25�

From the previous discussion about Case IV, it is known that the
solution space is less than or equal to N−1 and the number of
elements of the stiffness matrix k1 ,k2 , . . . ,kN is N. Considering the
symmetry properties, the numbers of nonzero geometry/topology
conditions, which can be used in Eqs. �13� and �14�, are 2N−1 �N
diagonal elements and N−1 off-diagonal elements� reducing the
problem to 2N−1 independent equations in less than 2N−1 un-
known factors. The first p geometry relations in the corresponding
undetermined parts of K �K12 and K22� are used to retrieve p
unknown factors �1 ,�2 , . . . ,�p, and consequently, all the values
of the elements of K, �k1 ,k2 , . . . ,kN�, and Cc, �cc1 ,cc2 , . . . ,ccN�,
can be obtained by the remaining topology conditions. Thus, the

entire system is identified successfully even with the incomplete
instrumentation setup.

Table 1 summarizes the number of unknowns, the available
conditions, the number of constraints, and the dimension of the
solution space for the five representative cases.

6 Uniqueness of the Solution for Reduced Order
Model Systems

The crucial point in the identification of systems with a limited
set of instrumentation is that only the part of complex eigenvec-
tors, named �1, can be exactly identified while the other compo-
nent, �2, can be estimated but without any guarantee to be exact.
Only for structures that can be modeled as shear-type structures,
the full eigenvector matrix can be correctly identified, provided
that the instrumentation setup is such that guarantees the unique-
ness of the solution. Consequently, one related question arises—Is
there more than one subpartition �2 that minimizes the cost func-
tional �Eq. �13�� and satisfies all the appropriate constraints �Eq.
�14��?

The answer to these questions can be found by looking into the
problem of “uniqueness of the solution,” which states that if an
admissible solution is reached, then this is the exact one. This
condition is quite simple to fulfill in the case of a complete set of
instrumentation, leading directly to the identification of full-order
models but rather difficult to satisfy with a limited set of instru-
mentation.

If the structural system has a complete set of instrumentation �at
each degree of freedom, there is a sensor and/or an actuator�, then
there is only one system that can produce the given input-output
time histories. In this case, the optimization problem is well posed
and it will have a unique solution. However, if the instrumentation
setup is not complete �sensors and/or actuators only at few
degrees-of-freedom�, then there could be more than one structural
system that can produce, for the given input, the given output at
the prescribed degrees-of-freedom, raising the issue of which sys-
tem to identify. In the work by Franco et al. �16�, the authors study
the identification of a simple 3DOF shear-type structure subjected
to a given input force in the central degree-of-freedom. As the
output, the displacement response of the second degree-of-
freedom is considered so that input and output time histories are
measured at the same mass. The authors prove the lack of unique-
ness of the solution by showing analytically that there are two
different structural systems that have the same input-output re-
sponse at the central mass. In this case, the optimization process
will have no meaning since the uniqueness problem is ill posed.
This multiplicity of the solution for the same 3DOF shear-type
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Fig. 1 4DOF shear-type building system: reduced-order scenarios
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system disappears when the input-output measurements are taken
on the top or the bottom mass: In both these cases, there will be
only one system that has a given input-output set of measure-
ments. Only particular instrumentation setups �selection of sensor
and actuator locations� and for particular structural models �e.g.,
shear-type model� can guarantee the uniqueness of the solution
and hence validate the optimization process. For example, it can
be shown �16,17� that the identification problem for shear-type
structural model has a unique solution when measurement infor-
mation is collected at �1� the bottom degree-of-freedom, �2� the
top degree-of-freedom, or �3� any two contiguous degrees-of-
freedom. For these three instrumentation setups, there is only one
structural model that can map the input-output relationship and so
guarantee the uniqueness of the solution. For these setups, the
optimization process will lead, if well posed, to the unique struc-
tural system. However, for an arbitrary instrumentation setup, the
uniqueness of the solution cannot be guaranteed ever for a shear-
type structural model.

Among the five representative categories previously described,
very little can be said about the uniqueness of the solution for the
more general cases �Cases I, II, and III�. For these cases, the
subpartition matrices related to the instrumented locations are ob-
tained more or less accurately, independent of whether the sys-
tem’s solution is unique. For example, for Case II, M11, Cc11, and
even K11 are the same for multiple solutions because of their
independency of �2 �17�.

On the other hand, Cases IV and V provide interesting, al-
though not complete, information about the uniqueness of the
identified solution. In the work by Franco et al. �16� and by Yu
�17�, detailed discussions on the “uniqueness problem” have been
presented. Starting from the pioneering work by Udwadia and
Sharma �14� and Udwadia et al. �15� but using different ap-
proaches �Sylvester’s dyalitic elimination �16� and Laplace trans-
form �17��, they reached the conclusion that whether or not a
system can be uniquely identified depends not only on the number
of sensors and actuators available but also on their locations. For
example, for structural models in Case V, the dimension of the

solution space could be reduced to zero �Table 1�. It can be shown
that, given the known �1 and starting from an arbitrary initial
guess of �2, the solution search will converge to one and only one
point. However, for different initial �2, it is still possible that the
search will end at several different points, representing different
solutions. In other words, the zero dimension solution space is not
a sufficient condition for the unique identification, although it
guarantees the determination of one of the possible solutions de-
pending on the initial guess of �2. As previously discussed, the
identification problem for a shear-type structure using only few
response measurements has a unique solution depending on
whether the sensor and actuator placement satisfies certain geo-
metric conditions �e.g., top mass, bottom mass, and two adjacent
masses�. If the sensors and actuators are placed at arbitrary loca-
tions, the uniqueness of the solution cannot be guaranteed impair-
ing the entire identification problem.

7 Numerical Examples
To show the validity of the previous statements, a simple but

general numerical example is presented. The system, shown in
Fig. 1, is a shear/type four-story building system; the values of the
mass, damping, and stiffness matrices used in this study are given
in Table 2. Although it is a shear-type model �Case V� for which it
is possible to obtain the exact solution, we will also consider the
intermediate steps so to highlight the differences with an analo-
gous Case IV model. For the purpose of showing the special prop-
erty of the complex eigenvectors when the assumption of classical
damping is introduced ��R����= �J�����, a proportional damping
matrix, Cc=0.1K+0.1M is considered. It is noteworthy that this
approach is also valid for the case of general damping. To assure
the unique solution of the identification process, the system is
excited by only one actuator, located at the bottom floor, while the
accelerations are measured at different floors for different sce-
narios �Table 3�: �1� sensors at the first, second, and third floors,
�2� sensors at the first and second floors, and �3� sensor only at the
first floor �Fig. 1�.

Table 2 Mass, damping, and stiffness matrices used for the system of Fig. 1

Exact system information of the test modal
Mass M Damping Cc Stiffness K

0.8 0.0 0.0 0.0 0.48 −0.1 0.0 0.0 4.0 −1.0 0.0 0.0
0.0 2.0 0.0 0.0 −0.1 0.6 −0.3 0.0 −1.0 4.0 −3.0 0.0
0.0 0.0 1.2 0.0 0.0 −0.3 0.52 −0.1 0.0 −3.0 4.0 −1.0
0.0 0.0 0.0 1.0 0.0 0.0 −0.1 0.2 0.0 0.0 −1.0 1.0

Table 3 The locations of sensors and actuators for different reduced-order system scenarios

The locations of inputs and outputs
1DOF unmeasured 2DOF unmeasured 3DOF unmeasured

3 sensors: 1st, 2nd, 3rd floors 2 sensors: 1st, 2nd floors 1 sensor: 1st floor
1 actuator: 1st floor 1 actuator: 1st floor 1 actuator: 1st floor

ψT = 10−1×

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8824 + 0.8824j 3.4188 + 3.4188j 3.9066 + 3.9066j 4.6339 + 4.6339j
0.8824 − 0.8824j 3.4188 − 3.4188j 3.9066 − 3.9066j 4.6339 − 4.6339j

−0.6395 − 0.6395j −1.9375 − 1.9375j −0.8032 − 0.8032j 3.7689 + 3.7689j
−0.6395 + 0.6395j −1.9375 + 1.9375j −0.8032 + 0.8032j 3.7689 − 3.7689j
−2.2889 − 2.2889j −0.8508 − 0.8508j 2.2010 + 2.2010j −0.6226 − 0.6226j
−2.2889 + 2.2889j −0.8508 + 0.8508j 2.2010 − 2.2010j −0.6226 + 0.6226j
−2.9021 − 2.9021j 0.9934 + 0.9934j −1.3027 − 1.3027j 0.2942 + 0.2942j
−2.9021 + 2.9021j 0.9934 − 0.9934j −1.3027 + 1.3027j 0.2942 − 0.2942j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 2 4DOF shear-type system: exact eigenvectors
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In Figs. 2–4, the �transpose� matrices containing the exact com-
plex eigenvectors and the identified complex eigenvectors for
cases 1 and 3 are presented. Because of the assumption of classi-
cal damping and of the normalization scheme used, the real and
the imaginary parts of the eigenvectors are identical. Since the
structure is properly constrained and no rigid body motion is al-
lowed, the eigenvectors appear in complex conjugate pairs. By
comparing Fig. 2 with Fig. 3, it is clear that, for case 1, the first
three rows of the eigenvector matrix �corresponding to the instru-
mented floors� are exactly identified, while the fourth identified
one �the noninstrumented floor� is proportional to the correspond-
ing exact one through the parameter �1. Similarly, for case 3 �Fig.
4�, only the components of the eigenvectors corresponding to the
first floor are identified correctly �first row�, while the other three
rows are only proportional to the exact ones. If the model repre-
senting the structure was ascribed to Case IV, the parameters �
could not be determined and so the identified eigenvectors would
be in their final stage �e.g., part of them would remain propor-
tional to the exact ones�. Instead, if the structure can be modeled
as a Case V model �shear type�, then the � parameters can be
determined, as shown later, and the identified eigenvectors will
perfectly match the exact ones.

Using the identified eigenvectors to reproduce the structural
outputs, it is possible to highlight the effects of the � parameters
on the structural response. If the structure is assumed to be repre-
sented with a model as in Case IV, the response at the instru-
mented degrees-of-freedom would match exactly the correct one,
while at the uninstrumented degrees-of-freedom, it is only propor-
tional to the correct one through the unknown � parameters. This
is clearly shown in Fig. 5, where the exact and the identified
outputs are plotted for the case of two sensors locations. The
ratios between each predicted and exact output, ŷi�t� and yi�t�,
respectively, are calculated and plotted for each floor. It can be
observed that these ratios stay constant during the entire time
histories: For the degrees-of-freedom with instrumentations,
the values of these ratios is equal to 1, indicating that the identi-
fied time histories are identical to the exact ones, while for the
unmeasured coordinates, these ratios are still constant but differ-
ent from 1 �third floor �=0.947 and fourth floor, �=2.8368�. It is
interesting to see that these values differ from case to case �fourth
floor case 1: �=1.7274, case 2: �=2.8368, while for case 3, �

=12.663�. If the structure is modeled as a shear-type structure
�Case V�, these � parameters could be uniquely determined and
the predicted outputs match the exact ones.

The structural matrices �mass, damping, and stiffness� obtained
from the identified eigenvectors will show identical pattern. The
submatrices related to the instrumented degrees-of-freedom are
exactly identified while those for the noninstrumented degrees-of-
freedom are proportional to the exact ones. This is clearly seen in
Fig. 6 where the stiffness matrices for case 1 �1DOF unmeasured�,
case 2 �2DOFs unmeasured�, and case 3 �3DOFs unmeasured� are
presented. For case 1, the upper 3�3 partition is correctly iden-
tified, while the last row and column are only proportional to the
exact ones through the coefficient �1. Similarly, for case 3, the
upper 1�1 submatrix is correct while the remaining submatrices
are proportional to the correct ones through coefficients �1, �2,
and �3.

These identified mass, damping, and stiffness matrices, al-
though not entirely correct, can still be used to determine some
characteristic parameters such as natural frequencies and mode
shapes. In fact, the particular shape of the mass and stiffness ma-
trices of the identified system for Cases IV and V is such that the
� parameters cancel out in the characteristic equation of the asso-
ciated eigenvalue problem as so the eigenvalues �natural frequen-
cies� are not affected. On the contrary, the normalized real eigen-
vectors will present a similar pattern to the complex identified
eigenvectors, keeping one part proportional to the exact one
through the � parameters. Both these conclusions can also be seen
in Fig. 5: The frequency content of the identified time histories is
identical to that of the exact one while the amplitude is constantly
different.

If the structure can be represented as a shear-type model, the
proportional � factors can be obtained through the analysis of
particular geometrical conditions �Eq. �25��. Consequently, the el-
ements of the subpartitions of the stiffness and damping matrices
related to uninstrumented DOFs can be exactly identified. For
example, for the case where only 1DOF is not equipped with
either a sensor or an actuator, the only unknown factor �1�1� can
be determined as follows:

k̄4 = k44 = ��1�1��2k̂44, − k̄4 = k43 = �1�1�k̂43

�1�1� = − k̂43/k̂44 = 0.5789/0.3351 = 1.7274 �26�

so that the correct mass, damping, and stiffness matrices are iden-
tified. Consequently, the properties of the system can be retrieved
as

⇒m1 = 0.8, m2 = 2.0, m3 = 1.2, m4 = 1.0

k1 = 3.0, k2 = 1.0, k3 = 3.0, k4 = 1.0 �27�

The same reasoning applies to the cases when 2DOFS or 3DOFs
are not instrumented. In those cases, the � factors are

ψ̂T
(1) =

[
ψ̂T

1(1) ψ̂T
2(1)

]
= 10−1×

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8824 + 0.8824j 3.4188 + 3.4188j 3.9066 + 3.9066j 8.0047 + 8.0047j
0.8824 − 0.8824j 3.4188 − 3.4188j 3.9066 − 3.9066j 8.0047 − 8.0047j

−0.6395 − 0.6395j −1.9375 − 1.9375j −0.8032 − 0.8032j 6.5105 + 6.5105j
−0.6395 + 0.6395j −1.9375 + 1.9375j −0.8032 + 0.8032j 6.5105 − 6.5105j
−2.2889 − 2.2889j −0.8508 − 0.8508j 2.2010 + 2.2010j −1.0754 − 1.0754j
−2.2889 + 2.2889j −0.8508 + 0.8508j 2.2010 − 2.2010j −1.0754 + 1.0754j
−2.9021 − 2.9021j 0.9934 + 0.9934j −1.3027 − 1.3027j 0.5082 + 0.5082j
−2.9021 + 2.9021j 0.9934 − 0.9934j −1.3027 + 1.3027j 0.5082 − 0.5082j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[

ψT
1(1) α1(1)ψ

T
2(1)

]

Fig. 3 4DOF shear-type system—identified eigenvectors:
Case I

ψ̂T
(3) =

[
ψ̂T

1(3) ψ̂T
2(3)

]
= 10−1×

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8824 + 0.8824j 14.874 + 14.874j 25.253 + 25.253j 58.679 + 58.679j
0.8824 − 0.8824j 14.874 − 14.874j 25.253 − 25.253j 58.679 − 58.679j

−0.6395 − 0.6395j −8.4294 − 8.4294j −5.1925 − 5.1925j 47.725 + 47.725j
−0.6395 + 0.6395j −8.4294 + 8.4294j −5.1925 + 5.1925j 47.725 − 47.725j
−2.2889 − 2.2889j −3.7015 − 3.7015j 14.227 + 14.227j −7.8832 − 7.8832j
−2.2889 + 2.2889j −3.7015 + 3.7015j 14.227 − 14.227j −7.8832 + 7.8832j
−2.9021 − 2.9021j 4.3218 + 4.3218j −8.4210 − 8.4210j 3.7255 + 3.7255j
−2.9021 + 2.9021j 4.3218 − 4.3218j −8.4210 + 8.4210j 3.7255 − 3.7255j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[

ψT
1(3) α1(3)ψ

T
21(3) α2(3)ψ

T
22(3) α3(3)ψ

T
23(3)

]

Fig. 4 4DOF shear-type system—identified eigenvectors: Case III
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�1�2� = 0.9470, �2�2� = 2.8368

�1�3� = 4.3506, �2�3� = 6.4642, �3�3� = 12.663 �28�

which lead to the determination of the correct mass, damping, and
stiffness matrices.

8 Noise Effects on Identification

In the process of identifying reduced-order models and their
expansion to full-order models, there are several factors, such as
errors in the identification of �1, �2, and �, that can affect the
final outcome. As discussed in Ref. �17�, it is reasonable to as-
sume that all the eigenvalues � and the known components of the
eigenvectors ��1� can be identified with sufficient accuracy even
in the presence of noise. Hence, the identification of reliable mass,
damping, and stiffness matrices for the full-order system will de-
pend on how the identification of the unknown part of complex
eigenvector matrix, �2, will be affected by noise.

To highlight the effects of measurement noise in the identifica-
tion of the structural matrices, a simple 4DOF system with diag-
onal M and tridiagonal Cc and K matrices is considered. The
system is subjected to external excitation at the first floor and the
structural response is measured at the first and second floors. The
input signal and structural responses are polluted with Gaussian,
zero mean, white noise sequences �2%, 5%, and 10% rms�. At
each noise level, three noise patterns �output only, input only, and
output/input noise polluted signals� are considered.

To highlight the effects of measurement noise on the identifi-
cation, the coefficient of variation �CoV� of the identified compo-

nents of �̂2 are computed and presented in Table 4 for all noise
cases. Starting with the exact values of �1 and � and using the
noise polluted data in inputs or outputs or the combination of the
two �first row in each noise level partition�, the error is small
enough to assume that �2 is identified as accurately as in the noise
free cases �CoV: 10−9–10−11�, independent of the noise level.
Considering that only the values of �1 are correct while the values
in � are obtained by noise polluted data �second row in each
noise level partition�, satisfactory values of �2 are still obtained
for all noise levels �CoV: of the order 10−4�. On the contrary, if the

400 420 440 460 480 500 520 540 560 580 600
−4

0
1

4

1st
F

lo
or

R
es

po
ns

e

400 420 440 460 480 500 520 540 560 580 600
−4

0
1

4

2nd
F

lo
or

R
es

po
ns

e

400 420 440 460 480 500 520 540 560 580 600
−4

0
1

4

3rd
F

lo
or

R
es

po
ns

e

400 420 440 460 480 500 520 540 560 580 600
−4

0

1.7274

4

4th
F

lo
or

R
es

po
ns

e

Time History from "t = 400*dt" to "t = 600*dt"

Measured Response y
Exact Response y*

Ratio of "y* to y" = y*/y

Fig. 5 Comparison of the measured response y and the identified responses ŷ=y� at different floors
of the 4DOF shear-type building for 1DOF unmeasured case

K̂(1) =

⎡
⎣ K̂11(1) K̂12(1)

K̂21(1) K̂22(1)

⎤
⎦ =

⎡
⎢⎢⎣

4.0000 −1.0000 0.0000 0.0000
−1.0000 4.0000 −3.0000 0.0000

0.0000 −3.0000 4.0000 −0.5789
0.0000 0.0000 −0.5789 0.3351

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎣

k11 k12 0 0
k21 k22 k23 0
0 k32 k33 α−1

1(1)k34

0 0 α−1
1(1)k43 α−2

1(1)k44

⎤
⎥⎥⎥⎦ ;

K̂(2) =

⎡
⎣ K̂11(2) K̂12(2)

K̂21(2) K̂22(2)

⎤
⎦ =

⎡
⎢⎢⎣

4.0000 −1.0000 0.0000 0.0000
−1.0000 4.0000 −3.1680 0.0000

0.0000 −3.1680 4.4606 −0.3723
0.0000 0.0000 −0.3723 0.1243

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎣

k11 k12 0 0
k21 k22 α−1

1(2)k23 0
0 α−1

1(2)k32 α−2
1(2)k33 α−1

1(2)α
−1
2(2)k34

0 0 α−1
1(2)α

−1
2(2)k43 α−2

2(2)k44

⎤
⎥⎥⎥⎦ ;

K̂(3) =

⎡
⎣ K̂11(3) K̂12(3)

K̂21(3) K̂22(3)

⎤
⎦ =

⎡
⎢⎢⎣

0.4800 −0.2300 0.0000 0.0000
−0.2300 0.2113 −0.1067 0.0000

0.0000 −0.1067 0.0957 −0.0122
0.0000 0.0000 −0.0122 0.0062

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎣

k11 α−1
1(3)k12 0 0

α−1
1(3)k21 α−2

1(3)k22 α−1
1(3)α

−1
2(3)k23 0

0 α−1
1(3)α

−1
2(3)k32 α−2

2(3)k33 α−1
2(3)α

−1
3(3)k34

0 0 α−1
2(3)α

−1
3(3)k43 α−2

3(3)k44

⎤
⎥⎥⎥⎦

Fig. 6 4DOF shear-type system: identified stiffness matrices
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values of �1 are also obtained using noisy measurement data, this
reflects in a poor identification of �2 �CoV too large �101 even to
claim convergence��.

From these results, it can be concluded that, for the proper
identification of �2, the eigenvector components at the instru-
mented locations, �1, play a key role. If the components of �1 are
identified correctly �19�, then for noise levels up to 10% rms, the
identification of �2 is quite accurate and the error in the full-order
matrices is small.

9 Damage Detection Using the Identified Matrices
The identified full-order mass, damping, and stiffness matrices

can be eventually used to locate and quantify structural damage.
For example, by comparing the stiffness matrix identified before
damage has occurred, K, and after damage, K�d�, it is possible to
identify the location where damage has occurred and to quantify
what is the reduction of the element/floor stiffness. In order to do
so, a reliable unique characterization of the stiffness matrix must
be identified. As previously shown, this is possible only in Case V
and with appropriate instrumentation setups. However, even for
Case IV, where the � parameters remain unknown, it is possible to
use the identified structural stiffness and mass matrices to obtain
correct assessment of the structural damage. In fact, as shown in
Ref. �17�, by assuming that the structural mass does not change
because of the damage, appropriately defined parameters can be
defined as ratios of identified stiffnesses and masses. Because of
the nature of the identified matrices, these newly defined damage
parameters are such that the � parameters cancel out, providing a
correct assessment of the amount and location of the structural
damage.

In the work by Yu �17�, one parameter that is introduced as a
tool for damage detection is the so-called K /M ratio. This param-
eter can be defined as the ratio between the square value of any
ith-jth element of the stiffness matrix and the product of the cor-
responding ith and jth masses. For the measured DOFs �i , j
=1,2 , . . . ,n�, such a ratio results in

k̂ij
2

m̂iim̂jj

=
kij

2

miimjj
�29�

where the �ˆ� quantities indicate the identified ones. Equation �29�
shows that, for the portion of the matrices related to instrumented
locations, the identified mass and stiffness matrices provide the
same value as the exact ones.

For the DOFs where no instrumentation is present �i , j
=1,2 , . . . , p�, the K /M ratio again provides identical values for
both the identified matrices and the exact ones:

k̂ij
2

m̂iim̂jj

=
kij

2 ��i−n� j−n�2

mii��i−n�2mjj�� j−n�2 =
kij

2

miimjj
�30�

showing that the K /M ratio is independent from the unknown

factors embedded in the identified matrices M̂ and K̂. This is a
valuable property that can be important in damage detection pro-
cesses that use reduced-order models.

The same K /M ratio can be obtained considering the identified

mass and stiffness matrices for the damaged system �M̂d and K̂d�.
Considering that the mass mii�i=1,2 , . . . ,N� does not change be-
fore and after damage, i.e., mii=mii

�d�, we can obtain information
on damage location and amount in the entire system by a new
damage index, the square root of the ratio between the two K /M
ratios corresponding to the damage and undamaged configura-
tions, as shown:

kij
�d�

kij
=�kij

�d��2

�kij�2 =�kij
�d��2/�mii

�d�mjj
�d��

�kij�2/�miimjj�
=�k̂ij

�d��2/�m̂ii
�d�m̂jj

�d��

�k̂ij�2/�m̂iim̂jj�
�31�

being i , j=1,2 , . . . ,N. This approach allows us to explore the
changes also in the off-diagonal terms of the stiffness matrix,
giving the opportunity of refining the damage identification pro-
cess �17�.

As a numerical example, consider a three degree-of-freedom
shear-type system, which can be modeled with a diagonal mass
matrix M �mi=1, with i=1,2 ,3�, a tridiagonal stiffness matrix K
�k1=k3=3, k2=1�, and a tridiagonal damping matrix Cc �cc1=cc3
=3, cc2=1�. Structural damage occurs on the system in two dif-
ferent scenarios: �1� a stiffness reduction of 10% at the first floor,
i.e., k1

�d�=2.7, and �2� a stiffness reduction of 10% at the first and
second floors k1

�d�=2.7 and k2
�d�=0.9. The system is identified using

only one time history of the input and one of the output at the first
floor. The identified mass and stiffness matrices for the two dif-
ferent damage scenarios are presented in Figs. 7 and 9 for the case
with no measurement noise. In this case, it is evident that the
comparison of the stiffness matrices from before and after damage
does not provide any information on the damage amount and lo-
cation, especially for the case of second damage scenario. Using
the K /M ratios clearly indicates the reduction of the stiffness on
the first and second floors �Figs. 8 and 10�. Even in the presence
of 5% rms input and output measurement noise �Figs. 11 and 12�,

Table 4 Results for different noise polluted scenarios of
reduced-order systems

STD/mean Noise patterns
Noise exact values Output only Input only Input and output

�1 and � 8.8211�10−11 6.3895�10−11 1.2032�10−11

2% �1 1.3010�10−4 2.4420�10−4 3.7365�10−4

None 5.5921�100 3.9407�100 1.0288�10−1

�1 and � 7.8525�10−10 6.2229�10−11 9.6750�10−10

5% �1 3.5942�10−4 5.0283�10−4 5.9610�10−4

None 6.7392�10−2 2.3771�100 5.8793�10−2

�1 and � 1.0310�10−9 8.9614�10−10 1.6556�10−9

10% �1 7.4519�10−4 1.7774�10−3 2.3450�10−3

None 8.1390�10−1 1.8915�101 4.4684�10−2

M̂(1) =

⎡
⎣ +1.0000 +0.0000 +0.0000

+0.0000 +1.0582 +0.0000
+0.0000 +0.0000 +0.8923

⎤
⎦ ; K̂(1) =

⎡
⎣ +3.7000 -1.0287 +0.0002

-1.0287 +4.2327 -2.9152
+0.0000 -2.9152 +2.6770

⎤
⎦

Fig. 7 3DOF shear-type system—identified mass and stiffness
matrices: 10% stiffness reduction at first floor, no noise

d(1) =

⎡
⎣

+0.9250 +1.0000 −
+1.0000 +1.0000 +1.0000

− +1.0000 +1.0000

⎤
⎦

Fig. 8 3DOF shear-type system—K/M ratios: 10% stiffness re-
duction at first floor, no noise

M̂(1&2) =

⎡
⎣ +1.0000 +0.0000 +0.0000

+0.0000 +0.7668 +0.0000
+0.0000 +0.0000 +0.6713

⎤
⎦ ; K̂(1&2) =

⎡
⎣ +3.6000 -0.7881 +0.0000

-0.7881 +2.9906 -2.1524
+0.0000 -2.1524 +2.0139

⎤
⎦

Fig. 9 3DOF shear-type system—identified mass and stiffness matrices:
10% stiffness reduction at first and second floors, no noise
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the K /M ratios successfully indicate the 10% reduction in the
stiffness of the first floor. For further details, the reader is referred
to the work by Yu �17�.

10 Conclusions
In this study, the identification of linear structural systems with

a limited instrumentation setup has been addressed. In these cases,
because the set of input/output measurement is not complete, the
full mass, damping, and stiffness matrices cannot be generally
retrieved. The lack of measurements at some degrees-of-freedom
implies that only the components of the eigenvector matrix related
to instrumented degrees-of-freedom can be successfully identified
while nothing can be said about the components related to the
unmeasured degrees-of-freedom.

In this paper, an attempt is made to expand the identified
reduced-order models to full-order models by using an optimiza-
tion algorithm based on a sensitivity analysis with respect to the
unknown components of the complex eigenvector matrix �2. To
this purpose, five increasingly simplified structural models have
been considered and their applicability to reduced-order problems
has been analyzed.

If the structural model can be represented by a diagonal mass
matrix and by tridiagonal damping and stiffness matrices, there is
only one unknown multiplying factor for all modes at every un-
measured coordinate. This implies that the identified mass, damp-
ing, and stiffness matrices will still be different from the exact
ones but will have a particular form that will allow the exact
determination of the system’s natural frequencies. When the struc-
ture can be modeled as a shear-type model, the geometric relations

among some specific elements of the damping and stiffness ma-
trices allow us to evaluate those unknown multiplying factors so
that the full-order system can be retrieved even with an incom-
plete set of instrumentation.

The effectiveness of the approach has been illustrated by nu-
merical examples. Noise effects on the identification of full-order
models and on their effective use in damage detection have also
been analyzed.
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d(1&2) =

⎡
⎣

+0.9000 +0.9000 −
+0.9000 +0.9750 +1.0000

− +1.0000 +1.0000

⎤
⎦

Fig. 10 3DOF shear-type system—K/M ratios: 10% stiffness
reduction at first and second floors, no noise

M̂(1) =

⎡
⎣ +1.0034 −0.0006 +0.0002

−0.0006 +1.0378 −0.0531
+0.0002 −0.0531 +1.0229

⎤
⎦ ; K̂(1) =

⎡
⎣ +3.7418 −1.0459 +0.0499

−1.0459 +4.2988 −3.2733
+0.0499 −3.2733 +3.2325

⎤
⎦

Fig. 11 3DOF shear-type system—identified mass and stiff-
ness matrices: 10% stiffness reduction at first, 5% rms noise in
input and output measurements

d
(1)
5% =

⎡
⎣

+0.9275 +1.0009 −
+1.0009 +1.0004 +0.9894

− +0.9894 +0.9829

⎤
⎦

Fig. 12 3DOF shear-type system—K/M ratios: 10% stiffness
reduction at first floor, 5% rms noise in input and output
measurements
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Suppressing Flutter Vibrations by
Parametric Inertia Excitation
A theoretical study of a slender engineering structure with lateral and angular deflections
is investigated under the action of flow-induced vibrations. This aero-elastic instability
excites and couples the system’s bending and torsion modes. Semiactive means due to
open-loop parametric excitation are introduced to stabilize this self-excitation mecha-
nism. The parametric excitation mechanism is modeled by time-harmonic variation in the
concentrated mass and/or moment of inertia. The conditions for full suppression of the
self-excited vibrations are determined analytically and compared with numerical results
of an example system. For the first time, example systems are presented for which para-
metric antiresonance is established at the parametric combination frequency of the sum
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1 Introduction
For some structures exposed to the action of wind flow, this

action can lead to a stability loss that initiates vibrations due to
aero-elastic interaction, see, e.g., Ref. �1�. In the case where lat-
eral and angular deflections have to be taken into account the
simplest mathematical model is governed by a set of two linearly
coupled differential equations of second order including aerody-
namic forces. These forces can be modeled by introducing aero-
elastic derivatives �2� or gyroscopic and nonconservative expres-
sion as widely discussed in literature, see, e.g., Refs. �3–5�. In the
present study the second approach is chosen.

For the investigation of the stability of the equilibrium position
only linear terms are considered. Such a model is expressed by the
following equations of motion:

ÿ + �y
2y − p� + �ẏ − q�̇ = 0 �1a�

�̈ + ��
2� + py + ��̇ + qẏ = 0 �1b�

where y represents the lateral deflection, � the angular deflection,
p and q the coupling coefficients, and � and � the damping coef-
ficients. The damping coefficients can be negative due to the self-
excitation mechanism, while the other coefficients are positive.
When the equilibrium position becomes unstable, the vibration
amplitudes resulting from the linearized equations in Eq. �1� are
unlimited. However, the vibrations of the underlying nonlinear
system are limited due to positive progressive damping. The va-
lidity of this mathematical model was proven experimentally in
Refs. �3,4�. A stability analysis of systems as in Eq. �1� possessing
gyroscopic and follower forces using different mathematical tools
can be found in Refs. �6–9�. This paper examines a possibility to
stabilize an otherwise unstable system by introducing time-
periodic variations in the inertia coefficients, a parametric excita-
tion.

The equations of motion in Eq. �1� describe the interaction of
lateral and torsional vibrations, which may represent a serious
danger and have to be either fully suppressed or, at least, limited.
Tuned vibration absorbers �TVAs� or elastic mounting of the foun-
dation connected with damping elements belong to the class of
passive means, see, e.g., Refs. �10,11�. In recent years a special
type of semiactive means using parametric excitation has been
analyzed successfully of being capable to suppress self-excited

vibrations. This semi-active means can by applied in the case
when the passive means are not sufficiently effective. This phe-
nomenon of damping the system’s vibrations by introducing a
nonresonant parametric excitation was found by Tondl �12� and
thoroughly investigated in Refs. �13,14�. A specific parametric
excitation that stabilizes an otherwise unstable system is called to
be at parametric antiresonance. In these contributions general ana-
lytical stability conditions were derived showing that a parametric
antiresonance may be expected if the parametric excitation fre-
quency � is close to a parametric resonance frequency of differ-
ence or sum type

�0 =
��i � � j�

N
for i, j = 1,2, . . . ,n, N = 1,2, . . . �2�

where �k are the undamped natural frequencies of the system. To
achieve this parametric antiresonance certain conditions have to
be satisfied. Consequently, not every self-excited system can be
stabilized by parametric excitation. First systems for which para-
metric antiresonances occur were found for time-periodic stiffness
variations, e.g., chain systems �12,14–20�, rotor systems �21,22�,
and cantilevers �23�. Parametric antiresonances of systems with
periodic damping variation are investigated in Refs. �13,24� and
systems with periodic mass or moment of inertia in Refs. �25,26�.
Finally, a combination of stiffness, damping, and/or inertia varia-
tion is considered in Refs. �13,27�.

The phenomenon of damping by parametric excitation has been
confirmed at the parametric excitation frequencies of the differ-
ence type, ����i−� j� /N, for example systems having symmetric
system matrices. Theoretical calculations in Refs. �13,26� give
conditions for which the phenomenon of vibration suppression
could occur at the parametric combination frequencies of the sum
type, ����i+� j� /N. However, a physically feasible system con-
figuration that meets these conditions could not be found so far.
This contribution deals with the possibility of applying parametric
excitation to suppress the selfexcited vibrations of coupled bend-
ing and torsion modes of the model in Eq. �1�. For the first time,
the present study describes example systems for which parametric
antiresonance is established at frequencies of sum type in Eq. �2�.

2 Formulation of Systems and Basic Considerations
Three systems with parametric excitation are considered, which

equations of motion are listed below.

1. System 1. A parametric excitation in the lateral motion intro-
duced by a periodic variation in the mass in Eq. �1�. The
equations of motion in its linearized form result in

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received August 6, 2007; final manu-
script received October 2, 2008; published online March 9, 2009. Review conducted
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�1 + �1 cos �t�ÿ + �y
2y − p� − �1�ẏ sin �t + �ẏ − q�̇ = 0

�3a�

�̈ + ��
2� + py + ��̇ + qẏ = 0 �3b�

2. System 2. The parametric excitation is due to the periodic
variation in the moment of inertia corresponding to the an-
gular motion. For this configuration the linearized equations
of motion yield

ÿ + �y
2y − p� + �ẏ − q�̇ = 0 �4a�

�1 + �2 cos �t��̈ + ��
2� + py − �2��̇ sin �t + ��̇ + qẏ = 0

�4b�
3. System 3. This system is a combination of the parametric

excitations in Systems 1 and 2, respectively, and is governed
by the following linearized equations of motion:

�1 + �1 cos �t�ÿ + �y
2y − p� − �1�ẏ sin �t + �ẏ − q�̇ = 0

�5a�

�1 + �2 cos �t��̈ + ��
2� + py − �2��̇ sin �t + ��̇ + qẏ = 0

�5b�

For �2=0 these equations simplify to Eq. �3� and for �1=0 to
Eq. �4�.

A first step toward the analysis is a transformation of the dif-
ferential equations of motion into the quasinormal form assuming
that the coefficients of the terms expressing damping �� and ��
and parametric excitation ��1 and �2� are small. By introducing
the transformation

y = x1 + x2, � = a1x1 + a2x2 �6�

in Eqs. �3a�, �3b�, �4a�, �4b�, �5a�, and �5b�, the equations of
motion with harmonic mass and/or inertia excitation can be trans-
formed into the general quasinormal form

ẍs + �s
2xs + �

k=1

n

�skẋk − �Sskẋk sin �t + Qskxk cos �t = 0 �7�

For the systems considered here n=2 holds. The coefficients in
Eq. �6� are determined by

ak = −
p

��
2 − �k

2 , k = 1,2 �8�

where

��2�1,2 = 1
2 ��y

2 + ��
2� �

1
2
���y

2 − ��
2�2 − 4p2 �9�

To obtain real values for �2 the condition

�y
2 + ��

2 	 4p2 �10�

must be met. The following relations can be derived for the sys-
tem frequencies �k, assuming that �1
�2:

��
2 
 �y

2: �1
2 	 ��

2 and �2
2 
 �y

2 �11a�

��
2 	 �y

2: �1
2 	 �y

2 and �2
2 
 ��

2 �11b�

The diagonal coefficients �kk in Eq. �7� correspond to the
modal damping of the kth mode. When a coefficient �kk is nega-
tive then the equilibrium position is unstable and self-excited vi-
brations in the jth vibration mode occur. According to the well-
known theory of linear equations with periodic coefficients, e.g.,
Ref. �28�, parametric instability intervals can be expected if the
parametric excitation frequency � is close to the parametric reso-
nance frequencies �0 in Eq. �2�. A method for determining the
instability intervals of the parametric excitation frequency � is
presented in Ref. �29�. In the case of harmonic stiffness excitation,

the method proves that only one sign in Eq. �2� corresponds to a
destabilizing parametric resonance while the other sign leads to a
stabilizing parametric antiresonance. For the case of a system with
harmonic mass excitation the same statement is found in Refs.
�26,13�. However, for a system with harmonic damping excitation
both signs in Eq. �2� lead to a destabilizing parametric resonance
if the parametric excitation is symmetric �see Ref. �24�� and to a
stabilizing parametric antiresonance if the parametric excitation is
skew symmetric �see Ref. �13��. In all analyzed systems so far the
parametric antiresonance can partly or even fully suppress self-
excited vibrations.

3 Analytical Predictions
In Sec. 3.1, the equations of motion of the three example sys-

tems are transformed to their quasinormal form. In Sec. 3.2, the
necessary and sufficient conditions for damping by parametric ex-
citation are given explicitly for each system.

3.1 Transformation to Quasinormal Form. Applying a Tay-
lor series for small values of � and respecting terms of up to first
order,

1

1 + �k cos �t
= 1 − �k cos �t + O��k

2� �12a�

�k sin �t

1 + �k cos �t
= �k sin��t� + O��k

2� �12b�

the equations of motion in Eq. �5� can be rewritten as

ÿ + �y
2y − p� − �1�cos �t��y

2y − p�� + � sin �tẏ� + �ẏ − q�̇ = 0

�13a�

�̈ + �y
2� + py − �2�cos �t���

2� + py� + � sin �t�̇� + ��̇ + qẏ = 0

�13b�
Transforming Eq. �13� into its quasinormal form in Eq. �7� ac-
cording to Eq. �6� yields

ẍ1 + �1
2x1 = −

a2

a2 − a1
���ẋ1 + ẋ2� − q�a1ẋ1 + a2ẋ2��

+
�1a2 cos �t

a2 − a1
��y

2�x1 + x2� + p�a1x1 + a2x2��

+
�2

a2 − a1
�cos �t���

2�a1x1 + a2x2� + p�x1 + x2��

− � sin �t�ẋ1 + ẋ2�� +
1

a2 − a1
�a2�1� sin �t�ẋ1 + ẋ2�

+ ��a1ẋ1 + a2ẋ2� + q�ẋ1 + ẋ2�� �14a�

ẍ2 + �2
2x2 =

a1

a2 − a1
���ẋ1 + ẋ2� − q�a1ẋ1 + a2ẋ2��

−
a1

a2 − a1
�2 cos �t��y

2�x1 + x2� + p�a1x1 + a2x2��

+
�1

a2 − a1
�a1 cos �t���

2�a1x1 + a2x2� + p�x1 + x2��

− � sin �t�ẋ1 + ẋ2�� −
1

a2 − a1
�a1�2� sin �t�ẋ1 + ẋ2�

+ ��a1ẋ1 + a2ẋ2� + q�ẋ1 + ẋ2�� �14b�
Thus, the parameters in Eq. �7� can be identified. The diagonal
damping coefficients are

�11 =
1

a2 − a1
�a2� − a1� − q�1 + a1a2�� �15a�
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�22 =
− 1

a2 − a1
�a1� − a2� − q�1 + a1a2�� �15b�

-diagonal parametric excitation coefficients read

Q12 =
− 1

a2 − a1
�a2��1�y

2 − �2��
2� − p��2 + �1a2

2�� ,

S12 =
a2

a2 − a1
��2 − �1� �16a�

Q21 =
1

a2 − a1
�a1��1�y

2 − �2��
2� − p��2 + �1a1

2�� ,

S21 =
− a1

a2 − a1
��2 − �1� �16b�

Setting �2=0 in Eq. �16� corresponds to System 1 and �1=0 to
System 2.

3.2 Stability Conditions. In this section analytical conditions
for parametric antiresonance are stated for the systems in Eqs.
�3a�, �3b�, �4a�, �4b�, �5a�, and �5b� as derived in Ref. �26� and
later, using an approach based on Ref. �30�, in Ref. �13�. It was
proven that whether the parametric excitation in a system is due to
a periodic stiffness, damping, and/or inertia variation, the neces-
sary condition

�11 + �22 	 0 �17�

must be met. To achieve full vibration suppression for the system
in Eqs. �3a�, �3b�, �4a�, �4b�, �5a�, and �5b� at the parametric
combination frequencies of order N=1, �=�0= ��1��2� in Eq.
�2�, in addition to Eq. �17�, the following condition needs to be
satisfied:

�11�22 �
1

4
	Q12

�2
− �0S12
	Q21

�1
� �0S21
 	 0 �18�

where either only the upper signs or only the lower signs are
valid. In the special case of self-excitation the condition �11�22

0 holds, and Eq. �18� demands the necessary but not sufficient
condition

	Q12

�2
− �0S12
	Q21

�1
� �0S21
 � 0 �19�

For all three systems, the necessary stability condition in Eq.
�17� simplifies to

�11 + �22 = � + � 	 0 �20�

i.e., the sum of the damping coefficients must be positive. For the
parameters in Table 1 this condition is met. Similar to Ref. �15�,
the second stability condition in Eq. �18� determines the minimum
excitation amplitude to achieve a stabilizing parametric antireso-
nance and is investigated for each system separately.

1. System 1. For �2=0, the crucial coefficients of the quasinor-
mal form become

Q12 =
− �1a2

a2 − a1
��y

2 − a2p�, S12 =
− �1a2

a2 − a1
�21a�

Q21 =
�1a1

a2 − a1
��y

2 − a1p�, S21 =
�1a1

a2 − a1
�21b�

The stability condition in Eq. �18� becomes for �0
= ��1��2�, see Eq. �2�,

�11�22 �
�1

2

4

a1a2

�a2 − a1�2	�y
2 − a2p

�2
− �0
	�y

2 − a1p

�1
� �0


	 0 �22�
2. System 2. Similar to System 1, for �1=0 the following cru-

cial parameters for the stability condition in Eq. �18� can be
identified:

Q12 =
�2

a2 − a1
�a2��

2 + p�, S12 =
�2a2

a2 − a1
�23a�

Q21 =
− �2

a2 − a1
�a1��

2 + p�, S21 =
− �2a1

a2 − a1
�23b�

Now, the stability condition in Eq. �18� reads

�11�22 �
�2

2

4�a2 − a1�2	a2��
2 + p

�2
+ �0a2
	a1��

2 + p

�1
� �0a1
 	 0

�24�

3. System 3. Finally, the stability condition in Eq. �18� for the
combination of Systems 1 and 2 becomes

�11�22 �
1

4�a2 − a1�2

	a2��1�y
2 − �2��

2� − p��2 + �1a2
2�

�2
+ �0a2��2 − �1�


	a1��1�y
2 − �2��

2� − p��2 + �1a1
2�

�1
� �0a1��2 − �1�


	 0 �25�
Thus, there is an important influence of the phase shift

between both parametric excitation components �1 and �2.
The stability condition in Eq. �25� can be used to determine
the necessary minimum excitation �1 for a given excitation
�2 and vice versa.

In the case of synchronous excitation, �1=�2=�, the quasinor-
mal form coefficients S12 and S21 vanish according to Eq. �16�. In
this case the stability condition in Eq. �25� simplifies to

�11�22 �
Q12Q21

4�1�2
	 0 �26�

which is exactly the relation to achieve a parametric antiresonance
for a pure stiffness variation, see Ref. �12�. For this synchronous
excitation the parameters Q12 and Q21 reach their minimum value.

Table 1 System and quasinormal form parameters

System parameter �y
2 ��

2 p q � �
Value 1.0 0.55 0.1 0.03 0.05 �0.015

Quasinormal form parameter �1 �2 a1 a2 �11 �22
Value 0.76 0.99 4.27 0.23 �0.004 0.039
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4 Numerical Calculations
The analytical predictions in Sec. 3 are compared with numeri-

cal calculations for specific values of the physical properties. The
system parameters considered are listed in Table 1 determining the
quasinormal form coefficients in Eqs. �16�, �21�, and �23�. Some
of the resulting parametric resonance and antiresonance frequen-
cies in Eq. �2� are listed in Table 2.

First, the stability of System 1 in Eq. �3� is analyzed, �2=0. The
numerical surface for largest eigenvalue in dependency of the
parametric excitation frequency � and the excitation amplitude �1
is plotted in Fig. 1�a�. The system is stable for negative eigenval-
ues. Due to the self-excitation introduced by the negative damping
coefficient �, the system without parametric excitation, �1=0,
possesses positive eigenvalues and is unstable. This is visualized
by the horizontal level in Fig. 1�a�. Activating the parametric ex-
citation, �1�0, deforms this horizontal level. The parametric ex-
citation is termed resonant in regions where this level is deformed
toward negative eigenvalues and antiresonant in regions with de-
formation toward positive eigenvalues. The parametric resonances
at the frequencies 2�1, 2�2, �2, and �2−�1 can be clearly iden-
tified. The most dominant destabilizing resonance is located at the
principal parametric resonance frequency 2�1, which corresponds
to the amplitude �1. A parametric antiresonance of first order oc-
curs at the frequency �1+�2. A further parametric antiresonance
of second order is located at ��1+�2� /2 but is of negligible sta-
bilizing effect.

Cutting the stability surface in Fig. 1�a� at the level 0 yields the
stability boundary in Fig. 1�b�. The shaded region denotes the
stable antiresonance region. For the parameters as listed in Table
1, a parametric antiresonance at ��1−�2� does not occur since the
necessary condition in Eq. �19� is violated. However, this condi-
tion is satisfied at �=�0=�1+�2. The analytical condition in Eq.
�22� predicts the minimum value of �1 that is necessary to achieve
parametric antiresonance to be 0.115. This value matches exactly
the numerical one in Fig. 1�b�. Summarizing, the self-excited Sys-
tem 1 can be effectively stabilized by the method of damping by
parametric excitation.

The numerical stability boundaries of System 2 in Eq. �4�, �1
=0, are shown in Fig. 2. Similar to Fig. 1�a�, parametric reso-

nances occur at the frequencies 2�1, 2�2, �1, �2, and �2−�1 in
Fig. 2�a�. However, switching from System 1 ��2=0� to System 2
��1=0� switches the dominant resonance frequency from 2�1 to
�2. The stability chart corresponding to Fig. 2�a� is plotted in Fig.
2�b�. For the values in Table 1, the minimum value for the para-
metric excitation amplitude becomes �2=0.115 for a parametric
antiresonance at �=�0=�1+�2. Again, a parametric antireso-
nance at ��1−�2� is not observed.

For both systems the stable antiresonance at �1+�2 is located
in between the unstable principal parametric resonances 2�1 and
2�2. In regions where the parametric antiresonance is close to
parametric resonance region, the stabilizing and the destabilizing
effect interact. With increasing �1 in System 1, the parametric
resonance frequency 2�1 becomes more and more dominant and
shifts the antiresonance region slightly toward the less dominant
region 2�2 and vice versa for increasing �2 in System 2. The
antiresonance region is shifted toward the resonance region that is
less dominant. Consequently, the skeleton line is shifted as well so
that the minimum values of the largest eigenvalues are not found
exactly at the analytically predicted frequency �1+�2 but slightly
to the left in Fig. 1�b� and to the right in Fig. 2�b�. For System 1
in Fig. 1�b� this shift is so large that the antiresonance region
interacts strongly near ��1.5 with the resonance at 2�2. Here,
the stabilizing effect is still present but becomes less effective than
the destabilizing 2�2 effect. The parametric antiresonance disap-
pears and the antiresonance region is cut.

Finally, the stability of System 3 is determined. For a synchro-
nous parametric excitation, �1=�2, the parameters Q12 and Q21
reach their minimum value so that the right expression in Eq. �26�
becomes too small to compensate the negative left hand term.
Hence, a parametric antiresonance cannot be established at the
frequency of summation and difference type, respectively. The
optimal case is when �1=−�2=�, i.e., the excitations are in oppo-
site phase, where the minimum value of � to achieve parametric
antiresonance at the summation frequency becomes 0.057. Similar
to Systems 1 and 2, an antiresonance cannot be achieved at the
difference frequency.

Figure 3 shows the stability in dependency of the excitation
amplitudes �1 and �2 according to Eq. �25�. Only the part in the

Table 2 Resonance and antiresonance frequencies

Frequency 2�2 �1+�2 2�1 �2 ��1+�2� /2 �1 2�2 /3 �2−�1
Value 1.98 1.75 1.52 0.99 0.87 0.76 0.65 0.23
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Fig. 1 Numerical stability boundaries for System 1. „a… Numerical surface for largest eigenvalue. „b… Stability chart at max �=0.
The shaded region denotes stable antiresonance region.
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vicinity of the main parametric antiresonance frequency �1+�2 is
shown. For very high values of �i tiny shapes occur also near
��1+�2� /N for N�2. Parameter combinations of �1 and �2 lying
inside this stability body correspond to a stable system. A vertical
slice at �2=0 corresponds to System 1 in Fig. 1�b�. A horizontal
slice at �1=0 corresponds to System 2 in Fig. 2�b�. Similar to
Figs. 1�b� and 2�b�, the stability body is cut by the principal para-
metric resonance 2�1 close to ��1.5 and 2�2 close to ��1.8.
In general, the wider the frequency interval becomes for fixed
values of �i, the more the maximum eigenvalue is decreased, see
Figs. 1�a� and 2�a�. Hence, in general, increasing �i increases the
stabilizing effect, see Fig. 3. However, since the interaction in the
example system is so large, at higher values of ��i�, the stabilizing
effect is still present but becomes less effective than the destabi-
lizing 2�2 effect and the parametric antiresonance disappears.

The stability body in Fig. 3 is point symmetric around the �1
=�2=0. As predicted by the analytical calculations, a synchronous
parametric excitation, �1=�2, cannot establish a parametric anti-
resonance. An out of phase excitation, �1=−�2, corresponds to a

slice at 45 deg. For this excitation the shortest distance of ���
=0.057 to the stability body is achieved, which confirms the ana-
lytical prediction.

To emphasize the influence of the phase relation between the
parametric excitation amplitudes �i, the stability body in Fig. 3 is
cut for a fixed arbitrary value of ��1�=0.1. A slice for �1=0.1 is
shown in Fig. 4�b� and for �1=0.1 in Fig. 5�b�. Hence, the mini-
mum value of ��2� in Figs. 1�b� and 2�b� increases for �1
	0–0.211 and decreases for �1
0–1.010. Similar results are
obtained for a chosen fixed value of �2. Again, these values per-
fectly match the analytical predictions according to Eq. �25�.

In the present study, the parametric mass and inertia excitation
of the example system in Table 1 is analyzed for the case of
synchronous variation, �1=�2, and the case of out of phase varia-
tion, �1=−�2. It was found that from these two cases the out of
phase variation is optimal. For a parametric stiffness excitation of
a two degrees of freedom system the optimal phase between stiff-
ness excitations was proven to be at 0 deg �synchronous� or 180
deg �out of phase�, depending on the system parameters �31�.
Consequently, for the present study a more optimal configuration
for an arbitrary phase relation between �1 and �2 is not expected.

Finally, it should be noted that it is necessary to avoid a tuning
of the system close to its internal resonance, e.g., if the parametric
combination resonance frequency of the sum type and first order,
�1+�2, becomes close to a principal parametric resonance fre-
quency of the same order, 2�1 and 2�2.

5 Conclusions
The suppression of selfexcited vibrations of an aero-elastic sys-

tem with bending and torsion modes is investigated. The applica-
tion of semi-active means is realized by a parametric excitation of
mass and/or moment of inertia that may lead to full vibration
suppression within certain limits of the system parameters if the
amplitude and frequency are tuned properly. The frequency of the
stiffness variation can be determined in advance, which leads to
an open-loop control, without any feedback information neces-
sary. A necessary condition for the application of this method is
that the unstable system possesses at least one stable mode. As
with previously investigated other self-excited systems, the para-
metric antiresonance effect was able to suppress the vibrations and
to stabilize the system for frequencies close to the parametric
combination frequency of the difference type. The outstanding
feature of the physically feasible example systems presented is its
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Fig. 2 Numerical stability boundaries for System 2. „a… Numerical surface for largest eigenvalue. „b… Stability chart at max �=0.
The shaded region denotes stable antiresonance region.

Fig. 3 Numerical stability boundaries for System 3
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ability to achieve full vibration suppression, parametric antireso-
nance, close to the parametric combination frequency of the sum
type.
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Mechanism Maps for Frictional
Attachment Between Fibrillar
Surfaces
The mechanics of frictional attachment between surfaces with pillars, inspired by the
head fixation system of dragonflies, is analyzed. The system consists of two surfaces of
interdigitating pillars held together through friction, as by the densely packed bristles of
two brushes when pressed together. The adhesive strength of the system is promoted by
high elastic modulus, high friction coefficient, large aspect ratio, and dense packing of
the fibers. However, the design is limited by the compressive buckling, the compressive
indentation or cracking of the contacting pillars, yielding in shear or similar mechanisms
that limit the achievable friction stress, and tensile failure of the pillars upon pull-out.
Maps, which summarize the strength of the adhesive system and the failure limits and
illustrate the trade-off among the design parameters, are presented. Case studies for
steel, nylon, and ceramic pillars show that useful strength can be achieved in such
attachments; when buckling during assembly and contact failure can be avoided, adhe-
sive performance as high as 30% of the tensile strength of the pillar material may be
possible. �DOI: 10.1115/1.3002760�

1 Introduction
Adhesion by surface patterning is a common reversible fixation

mechanism in biology. For example, the cordulegastrid dragonfly
Anotogaster sieboldii can stabilize its head, e.g., �1�, by moving it
dorsally until two sets of opposed tapered pillars, one on the head
and the other on the thorax, engage each other by sliding, similar
to the scheme shown in Fig. 1. The contact between the sliding
surfaces both stabilizes the lateral motion of the head relative to
the thorax and inhibits its axial motion due to the friction that is
generated if the pillars are required to slide axially relative to each
other. It is of interest to investigate the mechanics of such an
attachment to obtain insights into the physical phenomena that
might control its strength and stability. Such features possibly
include Hertzian contact, friction and adhesion among the pillars
�2�, buckling of the pillars during engagement �3�, failure due to
tensile overload of the pillars upon separation �4�, yielding in
shear upon pull-out that limits the friction stress �4�, and damage
of the contacts between the pillars due to excessive compression
�2�.

The system depicted in Fig. 1 inspires the possibility of artifi-
cial attachment devices based on the friction of interdigitating
pillars. The possible design of such a system is depicted in Fig. 2.
It should be noted that the proposed arrangement is commonly
utilized by those who store their shoe brushes by pressing their
bristle pads into each other. In such a configuration, the two
brushes will adhere to each other due to the friction between the
contacting bristles. In addition, the potential of the proposed sys-
tem can be gauged from the effectiveness of nails, which, when
driven into wood, are capable of very high attachment strengths
through friction alone. In the absence of an interference fit be-
tween the wood and the nail, it will be pulled out easily. This
example indicates clearly that the effectiveness of the proposed
system depends on a design that can generate enough constraint so
that sufficient friction can be created between the pillars when
they are interdigitated.

The design of the fibrillar surfaces is envisaged to have a regu-

lar array of pillars on a hexagonal grid. Two identical surfaces can
thus be interdigitated with each pillar surrounded by three from
the opposite surface, in a pattern depicted in Fig. 3. The intention
is for each pillar to remain stably constrained by the three with
which it is in contact. Note that pillars on a square grid would
appear to have the same property, but for geometric reasons asso-
ciated with packing densities, a hexagonal array provides better
adhesion/cohesion. The pillars are considered to be straight, with-
out taper, so that a large length of overlap can be achieved without
the attachment system being easily pulled apart. Interdigitating
tapered fibrils as utilized by the dragonfly will be treated in future
work. The spacing of the pillars must be such that an interference
fit is obtained among the contacting fibrils. As a consequence,
Hertzian contact will be achieved for elastic pillars, and a contact
pressure will be generated between each pair of fibrils. The Hert-
zian pressure will generate friction by Amonton’s law �2� and will
thus constrain the pillar surfaces from being pulled apart unless
sufficient tension is applied across the attachment system. Note,
however, that this means that the system can only be deployed to
a given strength level if the same degree of compression is applied
when the attachment is assembled. Contrasts between static and
dynamic friction may modify this in such a way that the tension to
pull the system apart will exceed the compression to press the
system together.

As noted above, the system will only deliver high adhesion
strength if the required elastic constraint is not degraded. One
obvious mechanism for loss of constraint is that the pillars may
splay out and relax the contact compression. This will be most
apparent on the perimeter of the pillar surfaces and can be ne-
glected when the area is very large compared with the cross-
section of the pillars. Another solution is to provide a stiff wall
around the pillar surfaces. In the present paper, the unconstrained
edge zone will be considered to be absent. The other obvious
mechanism for loss of Hertzian pressure is if the compression
among the pillars indents them plastically or cracks them. Thus a
design constraint is presented in which the pressure at the contacts
must be kept below a critical level. A high strength system neces-
sarily generates a high tensile stress on the pillars when the sur-
faces are pulled apart. The performance of the attachment strategy
is thus limited by the tensile strength of the pillars, another design
constraint. Furthermore, damaging stress concentrators at the
junction between the pillars and the system substrate must be
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avoided. This design consideration will be considered to have
been respected in what is presented below. The friction stress will
also be limited by yielding in shear at the contact upon pull-out or
by other shear failure mechanisms.

Problems can arise also when the system is pressed together.
Most importantly, buckling of the pillars as they are axially com-
pressed while engaging the attachment system is a fundamental
limitation and will be addressed by analysis and as a design con-
straint in the present paper. We assume further that the tips are
appropriately formed to avoid situations where pillars contact
each other head-on or where two or more pillars become entrained
in a gap meant to house only one.

Further complications can be anticipated. For example, if the
diameter of the pillars is extremely small, JKR type contact cohe-
sion or adhesion may be significant �2,5�. An obvious difficulty
caused by this would be the clumping together of the pillars on a
given surface due to adhesion. This would make the attachment
system inoperative because regular interdigitation of the pillars

will not occur. In addition, JKR adhesion would complicate the
nature of friction at the contact, both inherently and due to the
small scale of the contact �6,7�, so that deviations from the antici-
pated performance will occur. For the purposes of the current
paper, JKR type adhesion among the pillars will be neglected.

In the present paper, we will explore the mechanics of a fibrillar
attachment device based on friction, with special view to its limits
due to compressive buckling, contact failure, and tensile failure.
The approach will extend earlier models �see, e.g., Ref. �8�� and
will provide a theoretical base for the practical design of frictional
systems.

2 A Model for the Strength of the Attachment System
Consider an array of pillars laid out in a regular hexagonal

pattern with spacing s between centers �Fig. 3�. The diameter of
each pillar is D and their length is L. Thus to ensure Hertzian
contact between pillars from opposite surfaces, s��3D. The dif-
ference

� = D −
s

�3
�1�

is assumed to be small compared with D so that infinitesimal
strain Hertzian analysis is relevant.

Now consider two pillar surfaces as depicted in Fig. 4�a� in
which they are free from applied load and are just touching at the
tips of the pillars. Next, compressive forces are applied to drive
the surfaces together by a relative distance �, as depicted in Fig.
4�b�. Thus, contact zones of length � and width 2a will be present
between each pair of touching pillars, as indicated in Fig. 4�c�.
When the attachment system is engaged, the elastic deformations,
other than those due to frictional sliding, are tantamount to taking
two parallel cylinders of length � and moving one cylinder to-
ward the other by a distance �, starting from the line contact.
When both pillar surfaces are made from the same linear elastic
material, each experiences a deformation into the shape shown in
Fig. 5.

Assuming that the contact strains remain small and the width of
contact on the pillars is negligible compared with their circumfer-
ence, Hertzian analysis �9� gives the average normal pressure as

p =
�aE

4D�1 − �2�
�2�

when no length change of the cylinders is permitted and thus
plane strain conditions prevail. This pressure will be accurate for
the problem under consideration, except in a segment at each end
of the contact approximately 2a in extent. It follows that when the
contact length � is much greater than 4a, the result in Eq. �2� is
representative of the average pressure on the entire contact. In
addition, the relationship between the parameters of Hertzian con-
tact is given by �9�

�

D
=

4pa�1 − �2�
�ED

�2 ln
2D

a
− 1� =

a2

D2�2 ln
2D

a
− 1� �3�

These expressions require numerical iteration to calculate a for a
given �. Thereafter, Eq. �2� can be used to obtain p.

Now consider an attachment system that has been interdigitated
by pressing it together by the distance �. To pull it apart, the
frictional resistance of the sliding contacts must be overcome.
Each pillar contacts three on the opposite surface, so the tensile
force P on one pillar �see Fig. 4�c�� to pull the pillar surfaces apart
is

P = 6�pa� �4�

where � is the coefficient of friction. Note that if the pillars are
made from a metal, polymer, or other materials that yield plasti-
cally, the frictional shear stress is limited to less than or equal to
the yield stress in shear. Other shear failure mechanisms may be
possible dependent on which material is being used. Such con-

Fig. 1 Schematic of the head stabilization mechanism in a
dragonfly

LL

D

Fig. 2 Attachment system consisting of two pillar arrays to be
pressed together so that the pillars intersect and contact each
other. The pull-off strength is due to the interpillar friction.
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straint limiting the frictional shear stress will be addressed below.
From Eq. �4�, we can deduce that the tensile stress at the base

of each pillar is

� =
24�pa�

�D2 =
6�a2�E

D3�1 − �2�
=

96�p2��1 − �2�
�2DE

�5�

which gives the result in various convenient forms. Given that �
�D, the area fraction of the surface occupied by pillars is accu-
rately represented as � /6�3. It follows that the average tensile
stress required to separate the surfaces is given by

	 =
4�pa�

�3D2
=

��a2�E
�3D3�1 − �2�

=
16�p2��1 − �2�

�3�DE
�6�

The maximum attachment strength, 	c, of the system occurs when
the pillar surfaces are completely interdigitated so that �=L. Thus

	c =
4�paL

�3D2
=

��a2LE
�3D3�1 − �2�

=
16�p2L�1 − �2�

�3�DE
�7�

This result has been plotted in Fig. 6; the contours correspond to
equal values of the normalized attachment strength K=	c�1
−�2� /�E. This manner of plotting is preferred because of its uni-
versal form and its simplicity in terms of the most important vari-
able parameters, i.e., L /D and the contact strain measure, � /D,
upon which p�1−�2� /E directly depends �Eqs. �2� and �3��. The
plot, taken together with the second form on the right hand side of
Eq. �7�, shows that strong attachment is promoted by a high elas-
tic modulus, high compressive strains and stresses at the contacts
among the pillars, a high aspect ratio for the pillars, and a high
coefficient of friction.

Now the three important failure mechanisms will be incorpo-
rated in Fig. 6. Because the maximum tensile stress in a pillar is
�=6�3	 /�, tensile failure will be avoided as long as

	c � ��c/6�3 � 0.302�c �8�

where �c is the tensile strength of the pillar material. Thus in
favorable circumstances, the attachment system may deliver per-
formance as high as 30% of the tensile strength of the pillars.

Another limiting mechanism is the compressive failure of the
contacts among the pillars due to plastic indentation if the material
is ductile or to compressive cracking if the material is brittle. The
consequence of these phenomena will be the loss of contact pres-
sure and thus a degradation of the strength of the attachment sys-
tem. An alternative possibility is that fatigue will occur due to
repeated engagements and separations of the system. Whatever
the phenomenon involved, it can be avoided by limiting the con-
tact pressure so that

p � pc �9�

where pc is the permissible pressure for the relevant failure
mechanism.

As noted above, the frictional stress is limited by the yield
stress in shear or any other shear criterion of failure. Let 
c be the
critical shear stress at failure or yielding. The attachment strength
is thus limited to

	c =
4
caL

�3D2
=

16
cpL�1 − �2�
�3�DE

�10�

which replaces Eq. �7� when p�
c /�. For clarity, this adjustment
to the maps has not been made, and the contours of equal attach-
ment strength in Fig. 6 represent the situation only when p
�
c /�. Violations of this restriction will be addressed in special
cases below.

A more complex failure mechanism is buckling of the pillars
when the attachment system is being engaged by the application
of compressive force. The situation is illustrated in Fig.
7—showing the normal condition in Fig. 7�a� and the buckled
state in Fig. 7�b�—in which one pillar surface moves laterally due

s

3s

D

Fig. 3 Plan view of the pillar array: the dashed circle corresponds to one interdigitating
pillar
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to a lack of constraint, in addition to its movement toward the
other pillar surface. Note that if the pillar surfaces are constrained
from such lateral motion, as when stiff shafts guide the pillar
surfaces by sliding through holes, the buckling performance is
improved.

The propensity to buckle will change with the degree of pillar
overlap. When the overlap, �, is small, the column is at its longest

and most slender shape and is thus prone to buckling at smaller
compressive loads. However, the frictional features of the sliding
of one pillar relative to the other ensures that in this configuration,
the applied compressive load, F=6�pa�, is at its smallest level.
Thus, buckling is not likely when � is small. On the other hand,
when � is large and near its maximum level, L, the stockiness of
the resulting column, consisting of two pillars that must buckle
simultaneously, makes instability unlikely. �In fact, at this stage,
the frictional constraints among the forest of contacting pillars in
the system will inhibit buckling quite severely, so that buckling
when �=L or close to L is less likely than may be apparent from
Fig. 7.� Thus, we conclude that the most dangerous stage for
buckling during compression of the two surfaces toward each
other to engage attachment is intermediate with 0���L.

An analysis of the problem �see the Appendix� shows that buck-
ling becomes possible when

� = cos��384�paL2�

�ED4 	1 −
�

L

�

−
�

2L
�384�paL2�

�ED4 sin��384�paL2�

�ED4 	1 −
�

L

� = 0

�11�

Furthermore, ��0 precludes buckling. Thus, instability can be
avoided if ��� /L��0 for all � /L within 0� /L1. Since
��� /L� is a smooth, continuous function of � /L in the given
range, with ��0�=��1�=1, it suffices to find the minima of
��� /L� in the range 0� /L1 and to set to zero the lowest
minimum value of � in the given range for � /L. This provides the
constraint that ensures that buckling is avoided upon engagement
of the two surfaces by compression.

Numerical results �Appendix� show that the lowest minimum
for �, simultaneous with it being zero, occurs at � /L=0.5305 and
that this takes place when ��1−�2�p2L3 / �E2D3�=0.0594. The in-
terpretation for this result is that when the latter condition is sat-
isfied, no buckling will occur until � /L=0.5305, at which stage
the lowest order mode becomes possible. If buckling is avoided at
this stage by use of parametric values lower than those that trigger
instability, then no buckling will take place later, even as the com-
pressive load increases. It follows that the buckling condition can
be avoided completely as long as

∆−L2

∆

(b)

L L

(a)

2a

∆

L

L

P

P

(c)

Fig. 4 Schematic of the attachment device: „a… prior to being
engaged to create the attachment, „b… after displacement by a
distance �, and „c… the zone of contact between two touching
pillars

p

2a
2
δ

2
D

pp

2a 2a

Fig. 5 Approximate deformed cross-section of a pillar when
constrained by three pillars from the opposite surface
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��1 − �2�p2L3

E2D3 � 0.0594 �12�

Equation �12� provides another design constraint that must be ful-
filled in a successful attachment system. Note that if failure in
shear at the contact between pillars occurs so that the frictional
stress is limited to 
c, then the product �p2 in Eq. �12� should be
replaced by 
cp.

The three failure constraints have been plotted in Fig. 6 to show
the performance limits for the attachment system. This has been
done for two different situations. In Fig. 6�a�, a high value for the
tensile strength �corresponding to K=0.01� has been assumed; the
optimal design occurs at point O in the diagram, where the con-
dition for contact failure and compressive buckling are simulta-
neously met. For a lower tensile strength �K=0.003, Fig. 6�b��, the
tensile failure of the pillars will set in when the attachment system
is pulled apart after having been compressed to the state repre-
sented by point O. Therefore, the optimal designs are now found
along the locus of points AB. In both cases it has been assumed
that failure in shear has not occurred at the contact, and the fric-
tion stress �p can be sustained.

3 Optimum Attachment Strength: Limits and
Examples

The maps shown in Fig. 6 suggest a straightforward method for
identifying the optimal strength for a given material used to con-
struct the fibrillar attachment system. In Figs. 6�a� and 6�b� it can
be seen that the constraint involving compressive failure at the
contact can be active in both cases, giving point O in Fig. 6�a� and
point A in Fig. 6�b�. Thus, to find the optimal performance, we can
assume that p= pc and investigate whether tensile failure or buck-
ling is the other active mechanism at the relevant optimal condi-
tion. The parameters of the active mechanisms of constraint can
then be used to compute the optimal attachment strength. Note
that this procedure is valid also when shear failure or yielding has
occurred at the contact, but with the relevant formulas modified to
account for this situation.

Consider first the case where buckling is the active constraint,
and thus Fig. 6�a� characterizes the optimum. Buckling at the
optimum point O �Eq. �12�� occurs at

��1 − �2�pc
2L3

E2D3 = 0.0594 �13�

so that the aspect ratio of the pillars at the optimal condition is
given by

L3

D3 = 0.0594
E2

��1 − �2�pc
2 �14�

This result can be substituted into Eq. �7� to determine the opti-
mum attachment strength if buckling and contact failure are the
active constraints at the optimum. In the case of purely elastic
response at the contact, so that the friction stress is equal to �p,
the optimal attachment strength is then
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Fig. 6 Map of attachment strength of the fibrillar system with
failure limits: i.e., normalized contact stress p„1−�2

… /E versus
aspect ratio L /D of the pillar. The curved contours are lines of
equal normalized attachment strengths K=�c„1−�2

… /�E. „a…
The case of sufficient tensile strength „corresponding to K
=0.01… where buckling upon engagement of the attachment
system and compressive failure at the contacts together deter-
mine the optimum. „b… The case where the tensile strength of
the pillars determines the optimum attachment strength „K
=0.003….

∆= paF 6µ

∆

L

L

∆= paF 6µ
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∆= paF 6µ

∆= paF 6µ

(b)(a)

Fig. 7 Two pillars sliding against each other to depict the unit
problem for buckling during engagement of the attachment
system by compression: „a… The pillars sliding past each other
while straight. „b… A buckled pair of pillars.
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	c
buckling = 1.15

�2/3pc
4/3�1 − �2�2/3

E1/3 �15�

If failure in shear has limited the friction stress to 
c, the group
of terms �pc

2 is replaced by 
cpc throughout Eqs. �13�–�15�. The
attachment strength in this situation is thus given by

	c
buckling = 1.15


c
2/3pc

2/3�1 − �2�2/3

E1/3 �16�

If the tensile strength of the pillars is the controlling mechanism
at the optimum point, then the optimal strength is given from Eq.
�8� as

	c
strength = 0.302�c �17�

If 	c
strength�	c

buckling, then the optimal design is associated with
achieving a stress in the pillars equal to their tensile strength, and
the optimum is given by 	c=	c

strength. In contrast, if 	c
buckling

�	c
strength, the optimal design occurs in association with pillar

buckling during compression and failure of the contacts due to
excessive compressive stress on them. In this situation, 	c

=	c
buckling. Therefore, the ratio

R =
	c

buckling

	c
strength �18�

determines the optimal strength, with R�1 showing that 	c

=	c
strength and R�1 indicating that 	c=	c

buckling. If the contact
response is purely elastic with the Coulomb friction,

R = 3.81
�2/3pc

4/3�1 − �2�2/3

�cE
1/3 �19�

whereas

R = 3.81

c

2/3pc
2/3�1 − �2�2/3

�cE
1/3 �20�

when contact failure has occurred and the friction stress is limited
to 
c.

The following examples show that useful attachment strength
levels can be achieved by this frictional mechanism:

(i) A mild steel system designed for repeated use. In this case,
the contact compression is limited to a value that keeps the stress
magnitude under the contact to less than half the yield stress so
that fatigue endurance can be ensured �4�. The tensile equivalent
stress due to contact pressure alone has a maximum equal to 0.71p
�2�, whereas the maximum value due to frictional shear stress
alone is �3�p. Thus, an upper bound to the total tensile equivalent
stress is given by the root mean square of these two values. As-
suming a coefficient of static friction for steel of 0.6 �4�, the
resulting bound on the total tensile equivalent stress is 1.26p. To
ensure that the tensile equivalent stress is kept below half the
yield stress in tension, the contact stress is limited to pc=0.4�y,
where �y is the yield strength in tension. Thus, the resulting fric-
tional shear stress when p= pc is 0.24�y, below the yield strength
in shear, equal to �y /�3 according to the von Mises criterion �4�.
Therefore, Eq. �19� is used to obtain R, and to avoid fatigue, �c is
limited to 0.5�y. With E=210 GPa, �=0.3, and �y =210 MPa,
we obtain a value for R of 0.15. Thus buckling and the limitation
on the contact compression together constrain the optimal design.
As a consequence, the aspect ratio L /D of the pillars at the opti-
mal design as given by Eq. �14� is 88 and the optimal strength,
from Eq. �15�, is 4.8 MPa. A patch of pillars 14.4�14.4 mm2

would thus be able to support 1 kN repeatedly without fatigue;
such a load is representative of the weight of fully grown humans.

According to Eq. �2�, with p= pc=84 MPa, a ratio a /D
=0.00046 is required to achieve the desired friction in the optimal
design. Equation �3� then provides a ratio � /D=0.34�10−5, so
that the design is well within the limitations of infinitesimal strain
Hertzian contact theory.

The estimate for attachment strength in this case may be con-
servative since an overestimate of the maximum tensile equivalent
stress has been used in the analysis. A more accurate result could
be obtained through finite element analysis. Countering this pos-
sibility is the fact that the value used for the coefficient of friction
for steel against steel is at the high end of the data, valid for very
smooth polished surfaces �2�.

(ii) A high strength steel system designed for a single use. Since
the system is to be used only once, for reliability the response
should be elastic. Thus it suffices to keep the compression pc on
the contact to a level that will ensure that all materials under it
have a tensile equivalent stress below the yield strength, �y, in-
cluding the combined effect of contact pressure and shear. Conse-
quently, the limit on p is taken to be pc=0.8�y. With the coeffi-
cient of friction equal to 0.6 as before, the friction shear stress
during pullout will be below �y /�3. Therefore, Eq. �19� is used to
obtain R. We will consider steel with high tensile yield strength of
1 GPa, with �c equal to this value. Consequently, R=0.32 so that
the limit on the compressive stress and buckling together deter-
mine the optimal design, as is the case with the mild steel system
considered previously. In this situation, the aspect ratio L /D of the
pillars in the optimal design is 19.6. The resulting strength, pre-
dicted by Eq. �15�, is then 96 MPa. This means that 1 kN can be
supported once only by a patch of pillars 3.2�3.2 mm2. Re-
peated use will lead to low cycle fatigue �4�.

According to Eq. �2�, with p= pc=0.8 GPa, a ratio a /D
=0.0044 is required to achieve the desired friction for the optimal
design. Equation �3� then provides a ratio � /D=0.00022, and in-
finitesimal strain theory suffices as before. The small interference
fits in both this design, and the mild steel one indicates that pre-
cision methods may be necessary to implement design and manu-
facturing of fibrillar attachment systems.

(iii) A nylon system. Consider a nylon 6/6 with an elastic modu-
lus E=3 GPa, Poisson’s ratio of 0.25, and an ultimate tensile
strength of 85 MPa �10�. To avoid excessive deformation under
the contact, the design will be limited to an average compressive
stress p= pc=70 MPa. The coefficient of friction will be taken to
be 0.1 �10�, and the tensile strength of 85 MPa will be taken to
determine �c. It will also be assumed that the friction stress �pc
=7 MPa is lower than the limiting shear strength 
c, so that Eq.
�19� gives R. With such values, R is found to be 0.18, so Eq. �14�
determines L /D and Eq. �15� gives the optimal strength. We find
that the aspect ratio, L /D, for the optimal design is 10.5, and its
attachment strength is 4.7 MPa.

The attachment strength level of 4.7 MPa for the case of nylon
6/6, comparable to that obtainable with mild steel, is encouraging
and shows that 1 kN may be supported by such a system having
dimensions of 14.5�14.5 mm2. A more frictional polymer with
�=0.5, but otherwise with similar properties to nylon 6/6, would
boost the attachment strength by almost a factor of 3. According
to Eq. �2�, with p= pc=70 MPa, a ratio a /D=0.028 is required to
achieve the necessary friction level for the optimal design. From
Eq. �3�, this corresponds to an effective contact strain � /D
=0.0059, acceptable for the purposes of the infinitesimal Hertzian
contact analysis. The parameters in this case and the material in-
volved suggest that economical devices can be readily produced,
having quite high attachment strengths, especially when a poly-
mer with a high coefficient of friction is utilized.

(iv) A ceramic design. Although it may be too fragile and un-
reliable to be practical, such a design is interesting to explore the
limits of fibrillar attachment systems. Consider an attachment sys-
tem made from materials largely having the characteristics of alu-
mina, so that E=400 GPa and �=0.25. We will assume that a
tensile strength of 1 GPa can be achieved reliably, so that �c
=1 GPa. In ceramics, there is typically a variation of strengths
from component to component due to the random nature of the
size of the inherent flaws that lead to tensile fracture. Excessive
variance of the strength can be controlled by careful but expensive
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processing of the ceramic during manufacture. Another strategy to
enhance the uniformity, and thus the reliability, of the ceramic
tensile strength properties is to use alternating material layers in
tension and compression due to thermal strain mismatch �11�. We
assume that some such strategy has been implemented and thus
the tensile strength level of 1 GPa can be relied upon. Compres-
sive strengths of ceramics are typically five to ten times the level
of the tensile strength, so we will assume that a compression of 5
GPa can be sustained, and this will be used for the average com-
pressive stress, p= pc, on the contact. A friction coefficient of 0.4
�12� will be assumed, so that the friction stress is 2 GPa, and it
will be assumed that this can be relied upon without damage or
failure. Thus, Eq. �19� is used to evaluate R, which is found to be
2.3. The optimal design is this tensile strength limited, and Eq.
�17� gives the attachment strength, which is 300 MPa. A device
with dimensions 1.8�1.8 mm2 will thus support a load of 1 kN.

Inspection to Fig. 6�b� indicates that the lowest pillar aspect
ratio for an optimal design occurs when p= pc. The aspect ratio for
an optimal design can then be calculated from the third version of
the right hand side of Eq. �7� and is found to be 4.3. According to
Eq. �2�, with p= pc=1 GPa, a ratio a /D=0.0030 is required to
achieve the necessary friction level for the optimal design. From
Eq. �3�, this corresponds to an effective contact strain � /D
=0.00011, well within the valid regime for infinitesimal Hertzian
contact analysis.

(v) An example drawn from nature: keratin. The head stabiliza-
tion system of the cordulegastrid dragonfly Anotogaster sieboldii
has tapered fibrils that are up to 50 �m long, are 10 �m at their
base �1�, and are composed of keratin, �13�. On the assumption
that the attachment system operates by the mechanism described
above, we will analyze it for optimality. �Note that evolution does
not optimize but creates devices that are sufficiently good for
fitness; nevertheless, it is interesting to explore how good the
system could be.� Keratin has a Young’s modulus in humid air of
2 GPa and a proportional limit of 40 MPa �14�. It is not clear
whether this limit is a yield strength or simply a transition in the
elastic stiffness of the material. The properties just given are mea-
sured on woolen and hair fibers, but Feughelman �14� stated that
horn �also keratin� responds with the same stress-strain curve.
Thus, we will assume that the keratin cuticle forming the fibrils of
the Anotogaster sieboldii head arresting device has the properties
just given. We take Poisson’s ratio to be 0.4. The coefficient of
friction of keratin on keratin is around 0.5 �1,8�. We assert that
contact failure will occur at 120 MPa compression �i.e., three
times the proportional limit—a reasonable guess since the stress-
strain curve is almost horizontal beyond the proportional limit
until the material stiffens before final failure �14��. Friction can
therefore produce a shear stress of 60 MPa at the contact. The
limiting frictional consideration will therefore be the proportional
limit in shear, assumed to be 
c=20 MPa �i.e., half the propor-
tional limit in tension�, when p will be equal to 40 MPa. When
such values are substituted into Eq. �14� �with �pc

2 replaced by

cp�, we obtain L /D=7, similar to the value observed in the natu-
ral device. �Note, however, that the natural fibrils are tapered, but
we are treating the system as if it has nontapered ones.� Eq. �20�
gives R to be around 0.6, so that buckling is the controlling con-
sideration at failure for an optimal device. Equation �16� then
gives the strength to be 7 MPa, superior to mild steel designed for
repeated use and better than nylon. On the other hand, the keratin
case has strength inferior to mild steel when designed for single
use and not as good as the ceramic system. A keratin attachment
device of optimal design and with area of 1�1 mm2 will then
require 7 N to detach it. Note that these results were obtained with
pc assumed to be 40 MPa. If, instead, pc is taken to be its assumed
value of 120 MPa, R is around 1.2, and tensile strength is the
limiting condition. Eq. �17� then gives the attachment strength to
be 12 MPa, corresponding to a detachment force of 12 N for a
1 mm2 device. Gorb et al. �1� reported that Gorb and Popov �8�
measured a detachment force of about 2 N for a synthetic device

of such a net area simulating frictional fibrillar adhesion in in-
sects. �The synthetic fibril material, a polymer, was not identified.�
Thus our optimal estimates are consistent with experimental data,
if somewhat high, an understandable result given that the syn-
thetic system was not optimized.

4 Conclusion
The present analysis leads to practical conclusions for the opti-

mum design of frictional fibrillar attachment systems. A trade-off
between several governing parameters has been identified and
conveniently displayed in a map. The main parameters are as fol-
lows:

• Young’s modulus. The value of E should be large to produce
a high average pull-off stress between the two surfaces and
to suppress buckling during compression. A possible limita-
tion is given by the onset of brittleness in very stiff materi-
als.

• Friction coefficient. The friction coefficient should be maxi-
mized in the interest of high pull-off forces. However, fric-
tion also enters in the compressive load and therefore facili-
tates buckling.

• Pillar aspect ratio. The pull-off force is increased by high
aspect ratios which is limited by the onset of buckling.

• Contact pressure. For a given modulus, aspect ratio, and
coefficient of friction, the contact pressure between the pil-
lars enters quadratically in the attachment strength. It must,
however, be limited by degradation of the material, e.g., by
plasticity, fracture, or fatigue.

• Pillar size. Interestingly, within the Hertzian approach pre-
sented here, the adhesion performance does not depend on
the absolute size of the pillars.

The case studies assuming mild steel, nylon, ceramic, and kera-
tin pillars have shown that useful attachment strengths can be
expected from a frictional mechanism. The maps can be helpful in
guiding the optimum design of such attachment systems.
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Appendix: Buckling of the Pillars During Compressive
Engagement

The governing equation for the deflection of the pillars depicted
in Fig. 7 is

EI
d2u�x�

dx2 + Fu�x� = Fu	L −
�

2

 �A1�

with the definitions of F, u, and x as depicted in Fig. 7 and with I
being the second moment of area of the cross-section of the col-
umn. This equation applies to 0xL−�, so that the segment is
omitted where the columns overlap and are sliding against each
other by friction. This segment is considered to be straight be-
cause its bending resistance will be higher than elsewhere and the
constraints among the contacting columns will inhibit bending.
Note also that the moment contribution from the friction along the
sides of the columns is omitted from Eq. �A1� due to its smallness.
In addition, the second moment of area of a pillar with a circular
cross-section is

I =
�

64
D4 �A2�

which is assumed to be the case in the results presented.
The solution to Eq. �A1� is
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u = u	L −
�

2

�1 − cos	� F

EI
x
� �A3�

in which u�L−� /2� is the kinematic variable representing the
amplitude of the buckling. The compatibility condition for the
straight segment of the column in L−�xL−� /2 is given by

u	L −
�

2

 = u�L − �� +

�

2

du�L − ��
dx

�A4�

which is valid at the inception of buckling and for small deflec-
tions from the straight configuration. The evaluation of Eq. �A3�
at x=L−� and the insertion of Eq. �A4� into it give the eigenvalue
equation for the buckling,

cos�� F

EI
�L − ��� −

�

2
� F

EI
sin�� F

EI
�L − ��� = 0 �A5�

which normally would be solved for the critical values of F lead-
ing to buckling. In our case, we replace P in Eq. �4� with F to
account for the compressive situation under consideration. This,
together with Eq. �A2�, provides Eq. �11�.
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Accuracy and Convergence Using
a Local Interaction Simulation
Approach in One, Two, and Three
Dimensions
Guided waves are utilized in structural health monitoring for identifying damage in
material components. Simulations can be used to examine how elastic waves propagate
in components to help in selecting measurement and data analysis techniques. In this
work, the influence of grid size and the frequency sample rate on the amplitude accuracy
and convergence of local interaction simulation approach/sharp interface model (LISA/
SIM) numerical simulations are studied as they pertain to guided wave propagation in
structural materials. These issues are studied in all three dimensions, and amplitude
distortion with respect to the Courant–Friedrich–Lewy criterion is explored. The LISA/
SIM enables accurate and fast modeling of localized and sharp changes in material
properties across interfaces associated with heterogeneities and/ or boundaries. The
validity of the simulation is demonstrated by comparing simulated responses with experi-
mentally measured data. Additionally, Lamb wave dispersion curves are extracted
through the course of the convergence study using a broadband pulse and the two-
dimensional fast Fourier transform method. �DOI: 10.1115/1.2871105�

1 Introduction
Wave-propagation-based methods are used for damage detec-

tion in structural materials. Elastic wave-propagation-based tech-
niques are attractive because of their capability to propagate large
distances, sensitivity to different types of flaws, and the ability to
steer waves to reach hidden parts. There are many different tech-
niques available in the literature that exploits elastic waves such
as guided waves �including Lamb waves� for damage identifica-
tion. Apart from structural inspection, elastic waves can be ap-
plied to a number of areas including seismology and material
characterization. Lamb waves, also referred to as acoustoultra-
sonic waves, are present in platelike structures with free interfaces
and have shown potential for damage identification in metallic
and composite structures �1–5�. The structural inspection strate-
gies using Lamb waves need to be carried out based on an under-
standing of the nature of particle displacements and dispersion
characteristics of the Lamb mode of interest. Although experimen-
tal analysis is used for analyzing the propagation of waves in real
structural materials, numerical simulations can provide useful in-
formation to help in selecting strategies for experimental measure-
ment and data analysis.

The use of the local interaction simulation approach/sharp in-
terface model �LISA/SIM� method for studying the propagation of
waves was outlined in Ref. �6–9�. Agostini et al. �10� used the
LISA model to study the propagation of Lamb waves and their
interactions with damage in an orthotropic plate. The LISA model
is capable of describing local mechanisms in the neighborhood of
local heterogeneities in the form of holes or inclusions and allows
freedom of interaction between the lattice nodes in surrounding
cells. The SIM allows for exact treatment of the response param-
eters between interface cells and ensures that the LISA model can
be smoothly applied to implement ultrasonic pulse propagation in
heterogeneous structures �11�.

While the LISA/SIM provides a computationally efficient, ac-
curate, and simple method for developing a wave propagation
model, there are issues associated with the stability and conver-
gence of the signals especially in the case of finite dimensions and
in the presence of heterogeneous interfaces. Some of these prob-
lems are associated with pulse distortion if the Courant–Friedrich–
Lewy number �also referred to in the literature as the CFL number
or simply the Courant number� is not satisfied. These issues are
associated with the stability of the solution �12�. Apart from pulse
distortion, amplitude distortion is a closely related error that is
often not considered and instead simulation results are presented
in the literature using normalized amplitudes. Although it is easier
to implement the Courant criterion for one-dimensional problems,
in two dimensions, this is often not possible. Iordache et al. �12�
examined aspects of the pulse distortion problem associated with
the inability to satisfy the criterion in the one-dimensional finite
difference context. Delsanto et al. �13� studied the effects of con-
vergence and stability on one-dimensional finite difference analy-
sis while Ruffino and Delsanto �11� extended the studies to in-
clude the two-dimensional LISA model. Additional issues seen in
the two-dimensional and three-dimensional models include artifi-
cial reflections from the boundaries of individual grid cells, inad-
equate spatial samples in any one direction, and pulse distortion
due to the use of rectangular grids �11�. The issues of numerical
stability and numerical dispersion associated with two-
dimensional finite difference grids were also addressed by Can-
gellaris �14�. This problem is important especially in the context
of the use of the LISA model as a test bed for studying guided
wave behavior because of the multimodal nature of the signals.
Any pulse distortions can lead to erroneous estimates of damage
size and location based on remotely measured signatures and can
severely limit the use of this simulation technique as a test bed for
diagnostic studies of Lamb waves for damage identification.

Convergence and stability studies have been carried out for the
bulk of the numerical methods such as finite element �FE�, finite
difference �FD�, boundary element �BE�, and to some extent to the
one- and two-dimensional LISA models used for wave propaga-
tion. Further studies of these effects are needed to validate the
LISA model through analytical and/or experimental comparisons
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so that the LISA model can be used as a base line for experimental
damage identification techniques. Most of the stability and con-
vergence studies are limited to pulse distortion in one and two
dimensions with not many studies available for pulse distortion in
three dimensions because of the increased complexity. The disper-
sive nature of some of the wave forms and the coupled nature of
the elastic stiffnesses are additional sources of complexity. Ampli-
tude distortion is studied here using numerical simulations instead
of the analytical approaches �i.e., based on Taylor’s series expan-
sion� adopted by other researchers. Another aspect that necessi-
tates this detailed numerical study is the adoption of rectangular
cuboid grids while the original developments by Delsanto et al.
�7–9� used square cube grids. Additionally, it is important to study
the effects of the size of the specimen. One set of parameters for
a specific geometry might not be relevant for another specimen
with different thickness and geometrical characteristics.

In this work, numerical simulations in one, two, and three di-
mensions are used to show the stability and convergence of the
LISA model especially in the context of Lamb wave propagation.
Certain aspects of the accuracy and reliability of the LISA simu-
lations were earlier studied by Ruffino and Delsanto �11� in the
two-dimensional context for generic ultrasonic pulse propagation,
and a more detailed discussion of convergence and stability prob-
lems in FD methods is provided in Ref. �15�. The work in this
paper focuses on the impact of grid dimensions and sampling
frequencies in all three dimensions for plates of different geo-
metrical dimensions. The amplitude distortions seen in the signals
are also discussed, and suitable remedies to modify the signatures
are also suggested. Also, the numerical results are compared with
experimental data. In addition to the study of accuracy and con-
vergence of the LISA model, dispersion curves are obtained using
the two-dimensional and three-dimensional LISA models and are
compared to the analytical results. A two-dimensional Fourier
transform, using the procedure illustrated by Alleyne and Cawley
�16�, is used to extract the wave-number-frequency curves. In this
work, all the numerical results are carried out for a plate with free
boundaries.

2 Guided Waves in Elastic Media
In an infinite homogeneous isotropic elastic medium, only pure

modes are known to exist. The wave theory indicates primarily the
presence of two wave forms—the longitudinal wave and the shear
wave. The elastodynamic equation in 3D can be written as

�l�Sklmnwm,n� + Fk = �ẅk + �kẇk k,l,m,n = 1,2,3 �1�

where S�x1 ,x2 ,x3� is the stiffness tensor, wk�x1 ,x2 ,x3 , t� is the kth
displacement, Fk�x1 ,x2 ,x3� is the body force applied at a local
point, ��x1 ,x2 ,x3� is the material density, and �k�x1 ,x2 ,x3� is the
material attenuation factor based on a proportional, viscoelastic
damper.

In elastic media with finite thicknesses, the interaction of the
two primary wave forms with the finite boundaries results in the
presence of other wave forms including Rayleigh waves and sev-
eral modes of Lamb and shear horizontal waves. The coupling of
the longitudinal �P� and shear-vertical �SV� waves in plate-like
structures under traction-free boundaries results in Lamb waves.
The Rayleigh–Lamb equation is used to describe the phase veloc-
ity �or wave number� relationship for Lamb waves as a function of
frequency for platelike structures and is given by

tan �1 − �2d̄

tan ��2 − �2d̄
+ �4�2�1 − �2��2 − �2

�2�2 − 1�2 ��1

= 0 �2�

where VL is the Lamb wave velocity, h is the thickness, kS is the

S-wave wave number, �=VS /VL, �=VS /VP, d̄=kSh /2, VP is the
P-wave velocity, VS is the S-wave velocity, and the exponent +1
corresponds to symmetric and −1 corresponds to antisymmetric
modes. This equation is used to obtain the wave number �Figs

1�a� and 1�b�� dispersion curves �17�. The dispersion curves high-
light the multimodal nature of the Lamb waves. Figure 1 high-
lights the dependence of this multimodal characteristic on the
thickness of the material medium with higher thicknesses having
more modes at any given frequency.

3 LISA for Modeling Ultrasonic Wave Propagation
The LISA/SIM in one, two, and three dimensions was imple-

mented in MATLAB® and the simulations were carried out on an
IBM® workstation. The elastodynamic differential equation �Eq.
�1�� is discretized in either its complete form or in a dimensionally
reduced form to yield the LISA difference relations. Most of these
models are used to provide a qualitative idea of the effects of
changes in stiffness and/or density within a structural medium;
however, amplitude distortions need to be minimized in order to
ensure that the signal features appear at the anticipated time in-
stants without signal distortion corrupting these features. The
methodology and the results of the discretization procedure for
one-, two-, and three-dimensional models are presented in Refs.
�7–9�. This work uses rectangular cuboid grids, details of which
are presented in the Appendix and in Ref. �6�. The primary advan-
tage of implementing these expressions is that they can be used
for finer grid patterns where required �e.g., impedance changes
associated with heterogeneous structures� and they can be used to
model structures that cannot be discretized uniformly in all di-
mensions. The details of the expressions used in this work are

U+V

UFV

Fig. 1 Rayleigh–Lamb wave-number-frequency dispersion re-
lations for „a… 2 mm and „b… 6.6 mm aluminum plates with an
elastic modulus of 70 GPa, density of 2700 kg/m3, and Pois-
son’s ratio of 0.334
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provided in the Appendix. The derivation is presented in Refs.
�7–9� and is not repeated here.

4 Amplitude Accuracy of One-Dimensional and
Three-Dimensional LISA Signatures

4.1 Courant Stability Criterion. The Courant stability crite-
rion is often used as the minimum constraint criterion that explicit
iterative difference methods for homogeneous media must meet to
ensure the stability of the simulation associated with iterative dif-
ference equations. The LISA methodology, though different from
the traditional FD method in its formulation for wave propagation
in heterogeneous media, is also constrained by this criterion. Note
that the iterative equations associated with the LISA are obtained
by solving the discrete form of the differential equation, whereas
the equations for the FD are obtained by solving the differential
equation after discretization. The Courant criterion is essentially a
time step refinement criterion and relates the grid spacing at a
given time step and the maximum known wave speed present in
the medium by

CFL � cmax�t� 1

�x2 +
1

�y2 +
1

�z2 � 1 �3�

where cmax is the maximum wave speed �usually the longitudinal
wave speed�, �t is the time step, and �x, �y, and �z are the
spatial steps in the three Cartesian coordinates x, y, and z �18�.
The criterion ensures that the proper choice of sampling frequency
is made for a given grid spacing. The determination of the maxi-
mum wave speed is often a cause for concern because the wave
speeds tend to decrease with smaller spatial steps. This decrease in
speed occurs because larger grids tend to be stiffer, resulting in
faster wave speeds than predicted by the material properties of the
structure of interest. In one-dimensional models, this parameter
tends to be somewhat straightforward; however, in higher dimen-
sions, the CFL becomes much more complicated because of the
presence of coupling terms �e.g., coupling stiffnesses�.

Apart from the coarse spacing of grids, the other parameter that
affects the wave speeds is the number of spatial samples per
wavelength. To a large extent, grid dispersion can be mitigated by
adequately sampling the shortest wavelength, thereby minimizing
the error in the wave velocity. For instance, Harker �19� used the
estimate of the theoretical percentage error of the FD method for
a wave velocity c propagating in the x direction �i.e., the one-
dimensional case�,

c� = 100	N	




�x

c�t
sin−1� c�t

�x
sin� 


N	
�� − 1
 �4�

where N	 is the number of nodes at the excitation wavelength to
provide a minimum constraint on the number of grid steps per

wavelength �20�. Equation �4� is, however, seldom used. In fact,
the general criterion for spatial grid spacing in the literature ap-
pears to be at least eight grids per the minimum wavelength
present in the discretization �20,21�. Alleyne �21� also recom-
mends a grid spacing upper limit of 20 per minimum wavelength
to avoid computational issues �e.g., round-off error� associated
with very fine grids. These computational issues are either in the
form of excessively long run times or computational round-off
errors, increasing errors present in the discretization medium. This
result is relevant to second order iterative difference relations. For
higher order iterative difference methods, this requirement can be
relaxed.

The stability of the signatures was initially investigated for one-
and three-dimensional models. Apart from this, the selection of
Courant numbers much less than 1 was also investigated. In a
majority of the numerical simulations, a narrowband Hanning
window modulated sinusoidal tone-burst signal shown in Fig. 2�a�
was used for studying the response patterns at a single frequency.
In addition to the tone burst, pulse signatures such as the truncated
sinc pulse �Fig. 2�b�� and rectangular pulse signatures were used
to impart a broadband input pulse �in the frequency domain�. A
schematic setup of the plate structure used in the tests is shown in
Fig 3.

4.2 Amplitude Accuracy of One-Dimensional LISA
Signatures. A one-dimensional segment of length 150 mm was
first investigated, and the signature variations associated with dif-
ferent choices of sampling frequency and spatial spacing were
studied. The elastic modulus of the segment was assigned to be
104 GPa and the density 2800 kg /m3. Figure 4 indicates that the
change in sampling frequency and spatial spacing affects the am-
plitude of the signature. The ratios of the test to a baseline wave
speed for the different grid combinations �in order of sampling
frequency and spatial spacing: �a� 5.24 MHz, 1 mm; �b� 10 MHz,
1 mm; �c� 10.375 MHz, 0.5 mm; and �d� 20.75 MHz, 0.5 mm�
were found to be 1, 0.9875, 0.9825, and 0.9765 where the baseline
wave speed corresponded to dataset �a�. Additionally, the ratios of
the time delay of arrival of the peak signatures with respect to the
dataset �a� were found to be 1, 0.985, 0.9899, and 0.9838. The
result shows that the wave speed slows down when the spatial and
temporal spacing is decreased �i.e., if the sampling frequency is
increased� and reinforces the argument presented in Sec. 3 that
coarse grids are stiffer than fine grids. Furthermore, the results
from the one-dimensional study indicate that the amplitude of the
signal is affected by the CFL number. Previously, authors had
noted that while there were significant differences between CFL
numbers of 1 and 0.99, there was not as significant a difference
between CFL numbers 0.99 and 0.1 �12�. However, while the
shape of the signature is preserved and there is not a discernible

UFVU+V

Fig. 2 Simulation results input signal: „a… tone burst and „b… sinc pulse „with dashed
line indicating typical start of signal used in the simulation…
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shape difference at least for the first wave packet studied in Fig. 4
when using CFL numbers smaller than 1, the result shows that the
amplitude is influenced by the CFL number.

4.3 Amplitude Accuracy of Three-Dimensional LISA
Signatures. A three-dimensional aluminum plate �material prop-
erties: elastic modulus of 70 GPa, density of 2700 kg /m3, and
Poisson’s ratio of 0.33� of dimensions 300�300�2 mm3 was
next investigated, and the signal variations due to choices of sam-
pling frequency and spatial spacing were studied. The narrowband
tone-burst signal illustrated in Fig. 2�a� was used as the input
signal. The input was emitted from the bottom surface of the
center of the plate �150,150,0� mm and the responses were mea-
sured at �150,200,0� mm. The change in grid spacing brought out
noticeable changes in the shape of the wave form. This shape
change as seen in Fig. 5 is independent of the sampling frequency

and the wave pattern is seen to slow down with decreasing sam-
pling frequency. The ratios of the amplitudes of the primary wave
packet for all cases with respect to the base line wave packet �i.e.,
Case 1� and the relative delay in arrival of the peak signal ampli-
tude in Fig. 5 with respect to the base line �Case 1� are given in
Table 1. Again, this result reinforces the relationship between the
CFL number, the amplitude and frequency distortions observed
for the one-dimensional case, and the correlation between wave
speed and signal amplitude. This result also indicates that the
amplitude of the signal in three dimensions is also dependent on
the spatial sampling, and the use of coarse grids result in artifi-
cially high maximum wave speeds.

4.4 Trends in Amplitude Distortion. In most studies, com-
putational issues are centered on ensuring a minimum number of
grids for the minimum wavelength in the simulation. Another ef-
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Fig. 3 Schematic setup showing typical plate model with actuator for the „a… one-,
„b… two-, and „c… three-dimensional models

Fig. 4 Amplitude variation as a function of sampling frequency and spatial sampling
for the one-dimensional model

Fig. 5 Amplitude variation as a function of sampling frequency and spatial sampling
for a three-dimensional plate model
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fect mentioned in the literature is the need for adequate spatial
sampling in every dimension. In the thickness dimension reported
in this analysis, the number of grid nodes did not exceed 3. Ac-
cording to Alleyne �21�, at least five samples are needed in each
dimension of the plate structure to accurately model the propaga-
tion of elastic waves. The modeling results presented for the two
and three grid cases describe the primary and at most first two
secondary wave packets. While the dispersion characteristic for
each wave packet might not match the actual dispersion charac-
teristic, adequate spatial sampling in the in-plane dimensions en-
sures that the reflections from the boundaries reach the sensor site
at approximately the same instant as the expected times of arrival.
With increasing number of sample points, the lack of adequate
spatial sampling in the thickness direction grows and after some
point significantly diverges from the real solution. As long as only
the first two or three wave packets are considered for further
analysis, the simulations would be valid even for lower numbers
of grid samples in each dimension.

In the literature, researchers have primarily been concerned
with the distortion of the input signal and refer to energy spread-
ing because the numerical model does not meet the Courant limit.
The results obtained in this section indicate the dependence of the
amplitude on the same factors that influence the Courant criterion.
A relationship that relates the new amplitude of the signal and the
known base line amplitude estimated at a specified spatial and
temporal sampling can be written as

Anew =
Aold

� FS
�old�

FS
�new��2 f��x,�y,�z�old

f��x,�y,�z�new

�5�

where the subscript and superscript “old” is used to indicate the
current dataset and “new” is used to indicate the new dataset, A is
the amplitude of the signal, FS is the sampling frequency of the
signal, f��x ,�y ,�z� is a function of the spatial sampling param-
eters �in one dimensions, f��x ,�y ,�z�= ��x�cmax, in two and
three dimensions, this term is much more complicated because of
the presence of coupling terms�, and cmax is the maximum wave
speed present in the medium at the wave-number-frequency com-
bination of interest. The amplitude for fine grids and/or driving
point displacements in two and three dimensions can be obtained
using f��x ,�y ,�z�=��x ,�y ,�z ,cmax�, where  indicates a
product of the terms and �z=1 in the two-dimensional case.

The maximum wave speed as noted throughout this section is
dependent on the material properties of the medium, wave form
signal frequency, grid spacing, and to a much lesser extent on the
sampling frequency. The unresolved issue is the exactness of the
maximum wave speed present in the medium, and this aspect is
further complicated by the presence of multiple highly dispersive
Lamb modes at any given frequency. The exact amplitude of the
displacements cannot be determined using the present numerical
model without using known parameters regarding the displace-
ment parameter as obtained from experimental/analytical develop-
ments and the minimum wavelength of the signal of interest.
These assessments suggest that the two- and three-dimensional
models can only provide a qualitative comparison of the signa-

tures. A factor not considered in this study is the total number of
time points simulated, which may significantly affect the results
obtained. In summary, the expression in Eq. �5� can be used to
compensate for the precise temporal and spatial parameters during
or after the completion of the iterative simulation in order to miti-
gate signal shape distortion, signal amplitude distortion, and in-
correct estimates of the wave speed of the propagating wave form.
Furthermore, the expression is useful because it provides an alter-
nate normalizing method for data obtained from FD or LISA
simulations than unity normalization. Finally, the expression out-
lines the difficulty in using irregular grids to describe guided wave
propagation in two- and three-dimensional grids because the dif-
ferent grid elements are known to have different associated maxi-
mum wave speeds, leading to mismatch at boundary points.

5 Convergence Study
In the previous section, it was seen that decreasing the spatial

grid dimensions resulted in slowing of the wave form propagating
through the specimen. The large discrepancies seen in the reported
delays indicate that convergence was not achieved. Because it was
not possible to implement rigorous convergence measures in the
serial computing scenario, the convergence study was conducted
in two dimensions to limit computation time. In all cases, an alu-
minum plate structure with an elastic modulus of 70 GPa, density
of 2700 kg /m3, and Poisson’s ratio of 0.334 was modeled.

5.1 Convergence Study at a Single Frequency. First, a nar-
rowband signal was used to excite the center of the length dimen-
sion in the plate section shown in Fig. 3�b� using the 20 kHz
tone-burst signal described in Fig. 2�a�. The objective of this
study was to obtain information about the effect of grid size and
study convergence of the LISA model. As part of this study, three
different plate sections were considered: �i� 600�2 mm2, �ii�
600�4 mm2, and �iii� 150�2 mm2. The input was primarily di-
rected along the length of the plate �u displacement�, and one
study was conducted with the input signal directed along the
thickness dimension �w displacement�. Another study also at-
tempted to quantify the effects of a different actuator location. The
sampling frequency was varied throughout the study in order to
ensure stable results. A common sampling frequency was not cho-
sen so that total computational time could be reduced. It was
noted in the previous section that the sampling frequency has little
influence on the time of arrival. All signatures were obtained at a
distance of 50 mm from the location of the excitation, and the
time of flight was computed at the peak response of the first wave
packet. The analysis was repeated for grid combinations of 1 mm,
0.5 mm, 0.25 mm, 0.125 mm, and 0.0625 mm in both directions,
resulting in a maximum of 25 combinations of rectangular grid
patterns. The sampling frequency in each case was varied accord-
ing to the minimum grid dimension as �a� 10 MHz for a minimum
grid dimension of 1 mm, �b� 20 MHz for the 0.5 mm grid, �c�
40 MHz for the 0.25 mm grid, �d� 80 MHz for the 0.125 mm grid,
and �e� 160 MHz for the 0.0625 mm grid. The Courant number
for all cases was chosen such that stable solutions were obtained.

Table 1 Comparison of results obtained using the three-dimensional plate model

Case
�x

�mm�
�y

�mm�
�z

�mm�
FS

�MHz� CFL
Amplitude

ratio

Relative time
of flight

��s�

�a� 2 2 2 4.2 0.995 1 �base line� 0 �base line�
�b� 2 2 2 5.5 0.76 1.72 0.057
�c� 2 2 1 6.8 0.992 1.64 6.71
�d� 2 2 1 8.4 0.803 2.51 6.78
�e� 2 1 1 8.0 0.9935 1.27 7.99
�f� 2 1 1 9.0 0.8831 1.61 7.91
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The time of flight at each of these 25 combinations was then
subtracted from the coarse grid of 1�1 mm2, and the results were
reported in Figs. 6–8 after the addition of 1 �s.

The results from the 600�2 mm2 specimen �Fig. 6� indicated
that the difference in the time of flight of arrival of the first wave
packet for the 1�1 mm2 grid and the 0.0625�0.0625 mm2 grid
was as much as 45 �s, approximately 9/10th of the time period of
the excitation signal. A noticeable trend is that a reasonable match
is obtained for grid sizes of 0.25�0.25 mm2. However, the grids
of dimension 1/16th mm displayed a slight trend reversal, indicat-
ing that the grid has certain size restrictions. Another aspect seen
in Fig. 6 was that the reduction in the thickness dimension grids
led to larger time of arrival differences than the reduction in the
length dimension grids. Similar trends were also observed in Figs.
7 and 8, which were generated for a thicker specimen �600
�4 mm2� and a shorter specimen �150�2 mm2�. The difference
in the time of flight of arrival of the first wave packet for the 1
�1 mm2 grid and the 0.0625�0.0625 mm2 grid was about 12 �s
for the 600�4 mm2 specimen �Fig. 7� and was 42 �s for the
150�2 mm2 specimen �Fig. 8�. The results from Fig. 7 indicated
that the higher number of spatial samples present in the thicker
specimen ensured that the discrepancy between the coarse and the
fine grid was not as high as in the case of the thinner specimen.
The results from the shorter specimen �Fig. 8� are more surprising
and indicate that the longer dimensions of that specimen have a
negative impact on the wave speeds. This result indicates that the
number of spatial grids also have lower and upper limits in order
to get good convergence. The need for adequate spatial sampling
is reinforced by the results of the comparison between the times of
arrival of the first wave packet for the 0.5�0.5 mm2 grid and the
0.0625�0.0625 mm2 grid for the 600�2 mm2 specimen. This
difference is approximately 12 �s. Numerical results conducted

on the plate structure also confirmed that the time of arrival was
found to be independent of both input signal direction and input
signal position.

As noted by Smith �22� among others, stability and conver-
gence are different but related issues. An alternate form of con-
vergence was examined by comparing the normalized peak ampli-
tude of the first wave packet. The normalization was carried out
based on the sampling frequency and spatial sampling as de-
scribed in Eq. �3� and as noted in the y-axis caption of Fig. 9. The
base line grid was chosen as the coarse grid of size 1�1 mm2,
and the sensor measurements were obtained 300 mm from the
actuator. Convergence was examined by monitoring the amplitude
distortions at the sensor location. The actuator was placed at the
center of the specimen, as shown in Fig. 3�b�. The result also
suggests that the sensor amplitude is influenced by the number of
spatial samples in each dimension.

5.2 Convergence Study at Multiple Frequencies. The con-
vergence study was then extended to multiple frequencies by
inducing a broadband excitation in the form of a narrow pulse.
First, a rectangular pulse with a 2 MHz signal bandwidth was
imparted at the center of a 609.6�609.6�2 mm3 plate �at
�304.8,304.8,0� mm� with grid dimensions of approximately 1
�1�1 mm3 using the three-dimensional LISA model for a ho-
mogeneous, isotropic aluminum plate. As before, an aluminum
plate structure with an elastic modulus of 70 GPa, density of
2700 kg /m3, and Poisson’s ratio of 0.334 was modeled. The data
were collected at 609 nodal locations approximately 1 mm apart
along the center of the plate structure, and the first 608 nodal data
were used for further analysis. The two-dimensional Fourier trans-
form is given by �16�

Fig. 7 Convergence plot for varying grid sizes for a plate of
dimensions 600Ã4 mm2; center frequency of input signal:
20 kHz; sensor location „0,100… mm

Fig. 8 Convergence plot for varying grid sizes for a plate of
dimensions 150Ã2 mm2; center frequency of input signal:
20 kHz; sensor location „0,100… mm

Fig. 9 Convergence plot for varying grid sizes for a plate of
dimensions 600Ã2 mm2; center frequency of input signal:
20 kHz; sensor location „0,0… mm, actuator location
„0,300… mm

Fig. 6 Convergence plot for varying grid sizes for a plate of
dimensions 600Ã2 mm2; center frequency of input signal:
20 kHz; sensor location „0,100… mm
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U�k, f� =�
−

 �
−



u�x,t�e−i�kx+�t�dxdt �6�

where u�x , t� is the displacement at a spatial location x and tem-
poral point t, �=2
f is the angular frequency, and k is the wave
number. The implementation of the algorithm on the computer
was carried out by first transforming to the frequency domain
using the fast Fourier transform of the data rows in the spatial-
time data matrix. Next, the spatial-frequency data thus obtained
were transformed to the wave-number-frequency domain by com-
puting the fast Fourier transform along the data columns. This
double Fourier transform in the two different domains is referred
to as a two-dimensional Fourier transform �or 2D FFT�.

The results obtained numerically were then compared with the
results �Figs. 10–13� obtained analytically from the Rayleigh–
Lamb dispersion curves �Fig. 1�. The results indicate a match
between the fundamental symmetric �S0� and antisymmetric �A0�
modes at the lower frequency-wave-number combinations and a
progressive deviation from the analytical result with increasing
frequency and wave number. The deviations indicate that the stiff-
ness of the discretized elastic medium is higher than what it

should be and suggests that the coarse geometry of the grid cell
leads to stiffer results. This observation is similar to the results
obtained for the narrowband excitation. The numerical results also
match the analytical results for the second antisymmetric �A1�
mode as well although the actual frequencies at which the waves
appear are underpredicted.

The broadband excitation �rectangular pulse, Fig. 10�a�� did not
excite all the frequencies in the frequency range uniformly, and
the frequency response of the rectangular pulse indicated that the
input energy decreased with frequency. The sinc pulse shown in
Fig. 2�b� was instead used in a modified form �half the sinc pulse
was used as indicated by the segment outlined in Fig. 2�b�� to
obtain a more uniform excitation in the frequency domain, and the
result obtained using this excitation is shown in Fig. 10�b�. The
dispersion curves obtained using the half-sinc pulse provided bet-
ter results, both in clearly highlighting the actual curves and in the
frequency bandwidth.

Additionally, a detailed convergence study was conducted for
this broadband excitation. To facilitate the extraction of the dis-

(a)

(b)

Fig. 10 Dispersion curve simulation results for a 609.6
Ã609.6Ã2 mm3 aluminum plate with a grid spacing of 1 mm in
all three dimensions extracted from excitation using „a… a rect-
angular pulse and „b… a half-sinc pulse

Fig. 11 Dispersion curve simulation results for a 609.6
Ã2 mm2 aluminum section with a grid spacing of 1Ã1 mm2.
Boxed region indicates typical region in which experimental
analysis is carried out using Lamb waves by health monitoring
researchers.

Fig. 12 Dispersion curve simulation results for a 609.6
Ã2 mm2 aluminum section with a grid spacing of 1/8
Ã1/8 mm2

Journal of Applied Mechanics MAY 2009, Vol. 76 / 031008-7

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



persion curves, finer grid spacing was adopted and because of the
limitations of serial computing, the simulation study was carried
out in two dimensions. A 609.6�2 mm2 plate was considered
with the same properties as the plate structure described earlier in
this section. First, data were extracted from 608 points along a
straight line in an approximate 1�1 mm2 grid both to compare
the results obtained in the three-dimensional model and to set up
the comparisons for finer grid sizes. The results at this grid size
after the 2D FFT process for extracting the wave number disper-
sion curves was carried out are shown in Fig. 11. The trends
obtained here are similar to the trends observed in the 3D model
and also indicate that the 2D model would be a satisfactory test
bed for extracting the Lamb wave dispersion curves. The region
marked by the striped rectangle in Fig. 11 especially shows a good
match between the numerical and the analytical plots and indi-
cates the typical region in which experimental data are acquired
using Lamb waves by health monitoring researchers. The use of
the sinc pulse also illuminates the response curves uniformly
throughout the frequency range of interest.

The results from finer grid sizes are presented in Fig. 12 �grid
size of 0.125�0.125 mm2� and Fig. 13 �grid size of 0.0625
�0.0625 mm2�. Both grid sizes were considered because the re-
sults observed in the narrowband study indicated a trend reversal
�i.e., slowing of the wave packet� for finer grids �0.0625
�0.0625 mm2�. In both cases, the results indicate a very good
match between numerical and analytical results, indicating the

convergence of the grid at those sizes throughout the domain of
interest.

In addition to the Lamb wave dispersion curves, there are lines
seen in both figures that emanate from the right edge of the plot.
The right edges of Figs. 12 and 13 highlight the limit of the x axis
illustrated by the Nyquist wave number �i.e., the spatial equivalent
of the Nyquist frequency�. The lines that emanate backward and
forward from the right edge are spatially aliased segments of the
different dispersion curves. It is also seen in Fig. 12 that close to
the right extremity �i.e., at high wave numbers�, the numerical
results appear to diverge from the analytical result because of
inadequate spatial sampling. This aspect is not seen in Fig. 13 and
is indicative of convergence at this grid dimension over the entire
domain.

6 Experimental Comparison of Data From Plate
Structure

The results from the LISA/SIM numerical simulation at two
different sets of grid spacing were then compared to experimental
results obtained from an accelerometer to validate the model. A
PCB Piezotronics Inc. manufactured 7–8 mm diameter 352C65
accelerometer �100 mV /g sensitivity, 0.0015 m /s2 rms broadband
resolution� was used to acquire wave forms excited by a 10 mm
diameter PI P-010.00P �1000 V, 129 kHz, 4 g� piezostack actua-
tor. The signal was created by a 33220A Agilent arbitrary
wave form generator and the data were acquired using a
Tektronix TDS5054B-NVT digital storage oscilloscope 500 MHz,
1 Gsample /s. The Data were sampled at a rate of 5 MHz and was
averaged 64 times prior to storage using synchronous averaging at
a burst rate of 71 ms. A five wave Hanning windowed sinusoidal
signal centered at 20 kHz with a peak-to-peak amplitude of 10 V
and described in Fig. 2�a� was used for both the numerical and
experimental investigations. Both transducers in the study were
adhesively bonded to the structure through a layer of wax.

In the first set of experimental comparisons, an aluminum plate
of dimension 609.6�609.6�2 mm3 was considered for the
numerical and experimental investigations. The actuator was
placed at �304.8,304.8,0� mm and the sensor was placed at
�354.8,304.8,0� mm on the bottom surface of the plate structure.
The numerical responses were time shifted �in order to synchro-
nize with the actuation signal� and normalized. The displacements
in the out-of-plane dimension were recorded from the numerical
simulation, while the actuation was applied in the direction of the
width dimension. The plots in Fig. 14 show a comparison of grids
of approximate dimensions 2�2�2 mm3 and 2�2�1 mm3.
The results indicate that the 2�2�1 mm3 grid provides a better
match to the experimental result than the 2�2�2 mm3 grid. Fur-
thermore, the 2�2�2 mm3 grid appears to have a faster wave
velocity than the 2�2�1 mm3 grid. In a second set of results,
experimental comparisons were made between 1�1�1 mm3 and
1�1�0.25 mm3 grids on an aluminum plate of dimensions

Fig. 13 Dispersion curve simulation results for a 609.6
Ã2 mm2 aluminum section with a grid spacing of 1/16
Ã1/16 mm2

Fig. 14 Comparison of experimental and numerical results obtained at two grid di-
mensions for a 609Ã609Ã2 mm3 aluminum plate
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300�300�2 mm3. The actuator in this case was placed at
�150,150,0� mm and the sensor was placed at �200,150,0� mm.
The results from Figs. 15�a� and 15�b� indicate that at a finer grid
spacing, a better match of the response characteristics at other
points in time can be more easily achieved. This match is espe-
cially evident in Fig. 15�b� where a number of the numerical and
experimental wave packets match in the approximate shape and,
unlike the results in Fig. 14, the match extends much beyond the
first wave packet. However, for the results presented in Fig. 15,
the signal was time shifted by 41 �s to compare the numerical
results with the experimental results. This time of arrival mis-
match and the match in shape indicates that the wave speed has
slowed down uniformly along the grid and that coarser grids can
still provide a qualitative match of experimental data. This result
provides validation for the numerical model and further verifica-
tion that the use of finer grids provides a convergence toward the
experimental result.

7 Conclusions
In this work, results associated with the accuracy and conver-

gence of the Lamb wave simulations using the LISA method are
illustrated. The results obtained using this work confirm that the
choice of sampling frequency and grid size determines the mini-
mum requirements for a stable solution. A novelty of this work is
the analysis of the use of rectangular cuboid grids for modeling
Lamb waves in structures. In addition, an expression for the am-
plitude distortion observed from the numerical simulations has
been obtained. Narrowband convergence studies were conducted
on three different types of plates and it was found that longer and
thinner plates required the use of finer grids than for shorter
and/or thicker plates. The issues appear to be the need for ad-
equate number of spatial samples in each dimension and grid in-
stabilities associated with longer plate dimensions. These conver-
gence studies were performed using changes in the peak
amplitude of the signal in the form of delays in time of arrival and
distortion in the peak amplitude. The overall trends appear to be
similar in both cases with the changes in time of arrival, providing
a more stable measure of convergence. Studies were also con-
ducted using the 2D FFT to generate Lamb wave dispersion
curves. This method, which uses a broadband sinc pulse for inter-

rogation of the discretized medium, is an innovative feature of this
work. The results were compared with the analytical forms ob-
tained from the Rayleigh–Lamb equation. Additionally, broadband
convergence was illustrated by matching the numerical dispersion
curve with the analytical results. Finally, the numerical simulation
results at two different grid levels for two different plate speci-
mens were verified by comparing with the corresponding experi-
mental results. The results indicate that a good match was ob-
tained between numerical and experimental wave responses.
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Appendix

Two-Dimensional LISA Model
The 2D model is derived based on the assumption of transla-

tional invariance with respect to the third dimension. The discreti-
zation procedure reduces the 2D form of the differential equation
to an appropriate iterative difference relationship. It is assumed
that the model is discretized in small steps on a rectangular grid
pattern with each grid point, in the 2D case, at the intersection of
four different cells. There may be at most four different sets of
material properties at any interface grid point. The material prop-
erties of each cell are denoted by the notation of the grid point at
its lower left corner. These properties are averaged using the SIM.
It is assumed that the displacements and material properties are
continuous within a cell, while interface cells �e.g., cells at a
boundary� are treated as discontinuous. The displacement compo-
nents in two dimensions and in the absence of body forces can be
obtained at each point P�i , j� as

ui,j,t+1 = − q̄1
2ui,j,t−1 + 2q̄1ui,j,t +

q̄1�t2

4�̄
�

a,b=�

�− 2ui,j,t��̃1
2�̃1 + �̃2

2�̃12�

+ 2�̃1
2�̃1u�1a� + 2�̃2

2�̃12u�2b� + ab�̃1�̃2��	̃12 + �̃12��v�3b
a�

− v� + �	̃12 − �̃12��v�2b� − v�1a���� �A1�
and

U+V

UFV

Fig. 15 Comparison of experimental and numerical results obtained for a 1Ã1
Ã1 mm3 grid and a 1Ã1Ã0.25 mm3 grid for a 300Ã300Ã2 mm3 plate at 20 kHz
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vi,j,t+1 = − q̄2
2vi,j,t−1 + 2q̄2v

i,j,t +
q̄2�t2

4�̄
�

a,b=�

�− 2vi,j,t��̃2
2�̃2 + �̃1

2�̃12�

+ 2�̃2�̃2
2v�2b� + 2�̃12�̃1

2v�1a� + ab�̃1�̃2��	̃12 + �̃12��u�3b
a�

− u� + �	̃12 − �̃12��u�1a� − u�2b���� �A2�

where a ,b= �1 and ā , b̄=−1 when a ,b=−1 and ā , b̄=0 when
a ,b=1, q̄k= �1+ ��t /2��a,b�̃k / �̃�−1 is the transmission factor, and
�̄= �1 /4��a,b�̃�a ,b�, �u ,v� are the displacements, �̃k=�k�a ,b�,
�̃1=�1�a ,b�=1 /�xā, �̃2=�2�a ,b�=1 /�yb̄, and similar expres-
sions hold for other quantities with a tilde. The expressions ob-
tained here were found to match the expressions listed by Del-
santo et al. by setting q̄1= q̄2=1, 1 /�= �̃1= �̃2 �i.e., �=�xā=�yb̄�.

Three-Dimensional LISA Model
In a similar fashion to the 2D case, the three-dimensional rela-

tions at each point P�i , j ,k� were obtained for an irregular rectan-
gular cuboid grid �see Ref. �13� for details of the derivation� as

ui,j,k,t+1 = − q̄1
2ui,j,k,t−1 + 2q̄1ui,j,k,t +

q̄1�t2

8�̄
�

a,b,c=�

�− 2ui,j,k,t��̃1
2�̃1

+ �̃2
2�̃12 + �̃3

2�̃13� + 2�̃1
2�̃1u�1a� + 2�̃2

2�̃12u�2b�

+ 2�̃3
2�̃13u�3c� + ab�̃1�̃2��	̃12 + �̃12��v�6b

a� − v� + �	̃12

− �̃12��v�2b� − v�1a��� + ac�̃1�̃3��	̃13 + �̃13��w�5c
a� − w�

+ �	̃13 − �̃13��w�3c� − w�1a���� �A3�

vi,j,k,t+1 = − q̄2
2vi,j,k,t−1 + 2q̄2v

i,j,k,t +
q̄2�t2

8�̄
�

a,b,c=�

�− 2vi,j,k,t��̃2
2�̃2

+ �̃3
2�̃23 + �̃1

2�̃12� + 2�̃2�̃2
2v�2b� + 2�̃23�̃3

2v�3c�

+ 2�̃12�̃1
2v�1a� + bc�̃2�̃3��	̃23 + �̃23��w�4c

b� − w� + �	̃23

− �̃23��w�3c� − w�2b��� + ab�̃1�̃2��	̃12 + �̃12��u�6b
a� − u�

+ �	̃12 − �̃12��u�1a� − u�2b���� �A4�
and

wi,j,k,t+1 = − q̄3
2wi,j,k,t−1 + 2q̄3wi,j,k,t +

q̄3�t2

8�̄
�

a,b,c=�

�− 2wi,j,k,t��̃3
2�̃3

+ �̃1
2�̃13 + �̃2

2�̃23� + 2�̃3
2�̃3w�3c� + 2�̃1

2�̃13w�1a�

+ 2�̃2
2�̃23w�2b� + ac�̃1�̃3��	̃13 + �̃13��u�5c

a� − u� + �	̃13

− �̃13��u�1a� − u�3c��� + bc�̃2�̃3��	̃23 + �̃23��v�4c
b� − v�

+ �	̃23 − �̃23��v�2b� − v�3c���� �A5�

where a ,b ,c= �1 and ā , b̄ , c̄=−1 when a ,b ,c=−1 and ā , b̄ , c̄
=0 when a ,b ,c=1, q̄k= �1+ ��t /2��a,b,c�̃k / �̃�−1 is the transmis-
sion factor, �̄=1 /8�a,b,c�̃�a ,b ,c�, �u, v, w� are the displacements,
�̃k=�k�a ,b ,c�, �̃1=�1�a ,b ,c�=1 /�xā, �̃2=�2�a ,b ,c�=1 /�yb̄,
and �̃3=�3�a ,b ,c�=1 /�zc̄, and similar expressions hold for other
quantities with a tilde. The expressions in Eqs. �A3�–�A5� hold
only for orthotropic media. The expressions obtained here were

found to match the expressions listed in Ref. �13� and were ob-
tained by setting q̄1= q̄2= q̄3=1, 1 /�= �̃1= �̃2= �̃3 �i.e., �=�xā
=�yb̄=�zc̄�. In this paper, each grid point is at the intersection of
8 cells and 18 neighboring nodal points. Consequently, each grid
point is surrounded by at most eight different physical and/or
geometrical properties. The material properties of each cell are
marked by the notation of the grid point at its lower left corner.
These properties are averaged using the process described by
Delsanto et al. with the SIM �9�.
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Scattering by a Cavity in an
Exponentially Graded Half-Space
An inhomogeneous half-space containing a cavity is bonded to a homogeneous half-
space. Waves are incident on the interface and the problem is to calculate the scattered
waves. For a circular cavity in an exponentially graded half-space, it is shown how to
solve the problem by constructing an appropriate set of multipole functions. These func-
tions are singular on the axis of the cavity, they satisfy the governing differential equation
in each half-space, and they satisfy the continuity conditions across the interface between
the two half-spaces. Seven recent publications are criticized: They do not take proper
account of the interface between the two half-spaces. �DOI: 10.1115/1.3086585�

1 Introduction
Consider two half-spaces, x�0 and x�0, welded together

along the interface at x=0. The left half-space �x�0� is homoge-
neous. The right half-space is inhomogeneous. If a wave is inci-
dent from the left, it will be partly reflected and partly transmitted
into the right half-space. We assume that these fields can be cal-
culated.

Suppose now that the right half-space contains a cavity or some
other defect �see Fig. 1�. How are the basic fields described above
modified by the presence of the cavity? In general, it is not easy to
answer this question, as the associated mathematical problem is
difficult, in general.

In some recent papers, Fang et al. claimed to solve a variety of
such problems. All concern “exponential grading,” meaning that
the material parameters are proportional to e−�x for x�0, where �
is a given constant. The papers concern antiplane shear waves
�1–4�, thermal waves �5,6�, and shear waves in a piezoelectric
material �7�. All of these papers assume that the effect of the
interface on the cavity can be found by introducing simple image
terms, as if the interface were a mirror or a rigid wall. Unfortu-
nately, this assumption is incorrect.

In this paper, we outline how the problems described above can
be solved. We do this in the context of antiplane shear waves with
exponential grading and a circular cavity. The main technical part
concerns the derivation of suitable multipole potentials; these re-
veal the complicated image system.

The study of problems involving scatterers near boundaries or
interfaces has a long history. For linear surface water waves inter-
acting with a submerged circular cylinder, see the famous paper
by Ursell �8�. For plane-strain elastic waves in a homogeneous
half-space with a buried circular cavity, see Ref. �9�. There are
also many papers on the scattering of electromagnetic waves by
objects near plane boundaries; see, for example, Ref. �10�.

Some problems involving objects near plane boundaries can be
solved using images. However, determining the strength and lo-
cation of the images may be difficult: Doing so will depend on the
governing differential equations and on the conditions to be satis-
fied on the plane boundary. For two interesting examples where
the location of the images is not obvious, we refer to Chap. 8 of
Ting’s book �11� �construction of static Green’s functions in an-
isotropic elasticity� and a paper by Stevenson �12� �construction
of Green’s function for the anisotropic Helmholtz equation in a
half-space�.

The basic scattering problem is formulated in Sec. 2. The
reflection-transmission problem �for which the cavity is absent� is

solved in Sec. 3. The solution of this problem gives the “incident”
field that will be scattered by the cavity. To solve the scattering
problem, we construct an appropriate set of multipole functions
�Sec. 4.1�. Each of these satisfies the governing differential equa-
tions and the interface conditions, and is singular at the center of
the circular cavity. Each multipole function is defined as a contour
integral of Sommerfeld type; for a careful discussion of similar
functions, see Refs. �13,9�. In Sec. 4.2, the multipole functions are
combined so as to satisfy the boundary condition on the cavity,
leading to an infinite linear system of algebraic equations. The
far-field behavior of the multipole functions is deduced in Sec.
4.3. Closing remarks are made in Sec. 5.

2 Formulation
We consider the antiplane deformations of two elastic half-

spaces, bonded together. In terms of Cartesian coordinates �x ,y�,
the half-space x�0 is homogeneous, the half-space x�0 is inho-
mogeneous �“graded”�, and the interface is at x=0. The homoge-
neous region has shear modulus �0 and density �0 �both con-
stants�. The inhomogeneous region has shear modulus ��x� and
density ��x� given by

��x� = �0e2�x and ��x� = �0e2�x �1�

where � is a constant. Thus, the material parameters are continu-
ous across the interface.

It is not our purpose here to discuss whether any real materials
can be well represented by the functional forms given in Eq. �1�.
Certainly, the choices in Eq. �1� do lead to some mathematical
simplifications and they have been used in the past; see, for ex-
ample, Refs. �14,15�.

For time-harmonic motions, with suppressed time-dependence
e−i�t, the governing equation is

��xz

�x
+

��yz

�y
+ u�2��x� = 0

where u�x ,y� is the antiplane component of displacement and the
stress components are given by

�xz = ��x�
�u

�x
and �yz = ��x�

�u

�y

Thus, in the homogeneous region, where we write u0 instead of u,
we obtain the two-dimensional Helmholtz equation

��2 + k0
2�u0 = 0 with k0

2 = �0�2/�0 �2�
In the inhomogeneous region, we obtain

�2u + 2�
�u

�x
+ k0

2u = 0

This equation is satisfied by writing
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u�x,y� = e−�xw�x,y�

where w satisfies a different two-dimensional Helmholtz equation

��2 + k2�w = 0 with k2 = k0
2 − �2 �3�

For simplicity, we assume that k0
2��2 and write k= +�k0

2−�2.
The interface conditions require that the displacements and nor-

mal stresses be continuous, so that

u0�0,y� = u�0,y� = w�0,y� �4�

� �u0

�x
�

x=0

= � �u

�x
�

x=0

= � �w

�x
�

x=0

− �w�0,y� �5�

3 Incident Field
Suppose that a plane wave is incident on the interface from the

homogeneous side. This wave is given by

uin�x,y� = eik0�x cos �0+y sin �0�

where �0 is the angle of incidence, ��0��	 /2; �0=0 gives normal
incidence. There will be a reflected wave ure and a transmitted
wave utr. Evidently,

ure�x,y� = Reik0�−x cos �0+y sin �0�, x � 0 �6�

utr�x,y� = Te−�xeik�x cos �+y sin ��, x � 0 �7�

where R, T, and � are to be found. Writing u0=uin+ure and u
=utr, Eq. �4� gives

1 + R = T and k0 sin �0 = k sin �

Then, Eq. �5� gives

�1 − R�ik0 cos �0 = T�ik cos � − ��

Solving for R gives

R =
k0 cos �0 − k cos � − i�

k0 cos �0 + k cos � + i�
=

− i�

k0 cos �0 + k cos �

and then T=1+R.
For a simple check, put �=0; we obtain k=k0, �=�0, R=0,

and T=1, as expected.

4 Scattering by a Buried Cavity
Next, we investigate how the wavefields of Sec. 3 are modified

if there is a cavity in the inhomogeneous half-space, x�0. See
Fig. 1.

We suppose that the cavity’s cross section is circular, with
boundary

�x − b�2 + y2 = a2 with 0 � a � b

We also introduce polar coordinates, �r ,
�, so that

x = b + r cos 
 and y = r sin 
 �8�

Thus, the cavity’s boundary is given by r=a, and the boundary
condition is

�u

�r
= 0 on r = a �9�

where u is the total field in the inhomogeneous half-space.
To solve such a scattering problem, we write

u0 = uin + ure + v0, x � 0

u = utr + v, x � 0, r � a

where v0 solves Eq. �2�, v=we−�x, and w solves Eq. �3�. Also, v0
must satisfy the Sommerfeld radiation condition and v must decay
with x.

4.1 Multipole Functions. To represent the scattered field, we
introduce functions �n of the form

�n = �e−�x	Hn
�1��kr�ein
 + �n
 , x � 0

n, x � 0
�

where Hn
�1� is a Hankel function and n is an arbitrary integer. We

require that �n solves Eq. �3� and n solves Eq. �2�. In addition,
�n and n are to be chosen so that �n satisfies the interface
conditions, Eqs. �4� and �5�.

The use of polar coordinates is convenient for handling the
circular cavity but it is inconvenient when trying to impose the
conditions at x=0. Therefore, we convert from polar coordinates
to Cartesian coordinates using an integral representation; see the
Appendix for details. In particular, if we insert Eq. �8� in Eq. �A4�,
we obtain the integral representation

Hn
�1��kr�ein
 =

�− 1�n

	i �
−�

�+	i

ek�b−x�sinh �−iky cosh �e−n�d�

for x � b, �y� � � �10�

Notice that this formula is valid on the interface x=0. The contour
of integration in Eq. �10� is also described in the Appendix.

The form of Eq. �10� suggests using a similar integral represen-
tation for �n, and so we write

�n�x,y� =
�− 1�n

	i �
−�

�+	i

A���ekx sinh �e−iky cosh �+kb sinh �−n�d�, x � 0

�11�

where A��� is to be found; �n solves Eq. �3� automatically for any
reasonable choice of A.

We shall also need a similar integral representation for n�x ,y�
in x�0, where the wavenumber is k0. However, in order to match
solutions across the interface at x=0, we shall require the same
dependence on y as in Eq. �11�. Thus, we consider

n�x,y� =
�− 1�n

	i �
−�

�+	i

B���ex����e−iky cosh �+kb sinh �−n�d�, x � 0

�12�

where B��� is to be found,

���� = �k2 cosh2 � − k0
2�1/2 = �k2 sinh2 � − �2�1/2

and the square root is taken so that Re ��0 on the contour.
Notice that Eq. �2� is satisfied automatically for any reasonable
choice of B.

We are now ready to enforce the interface conditions. Continu-
ity of �n across x=0 gives 1+A=B whereas continuity of ��n /�x
gives

x

y

O
�

b θ

Fig. 1 The scattering problem. The half-plane on the left of x
=0 is homogeneous. The other half-plane is inhomogeneous.
The circular cavity has radius a. A plane wave is incident from
the left.
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− k sinh � − � + �k sinh � − ��A��� = ����B���

Hence

A��� =
k sinh � + � + �

k sinh � − � − �
�13�

and

B��� =
2k sinh �

k sinh � − � − �
�14�

These formulas complete the construction of the multipole func-
tions �n.

Note that when �=0, k=k0, ����=−k sinh �, A=0, B=1, and
n=Hn

�1��kr�ein
, as expected.

4.2 Imposing the Boundary Condition. In the homogeneous
half-space, we write

u0 = uin + ure + 
n

cn�n

where �n denotes summation over all integers n. Similarly, in the
graded half-space, we write

u�r,
� = utr + 
n

cn�n

Then, by construction, the governing partial differential equations
and the interface conditions along x=0 are all satisfied. It remains
to determine the coefficients cn using the boundary condition on
r=a, Eq. �9�; this gives


n

cn� ��n

�r
�

r=a

= − � �utr

�r
�

r=a

�15�

To proceed, we write both sides of this equation as Fourier series
in 
. For the right-hand side, we have

utr = e−�xTbeikr cos�
−�� = e−�xTb
m

imJm�kr�eim�
−��

where Tb=T exp�ikb cos �� and Jn is a Bessel function. Also, we
have the expansion

e−�x = e−�b
s

�− 1�sIs��r�eis


where In is a modified Bessel function. Hence,

utr�r,
� = e−�b
m

�− 1�mUm�r�eim


where

Um�r� = Tb
s

�− i�sIm−s��r�Js�kr�e−is�

In a similar way, we obtain

�n�r,
� = 
m

�− 1�mfm
n Jm�kr�eim
, 0 � r � b

with

fm
n =

�− 1�n

	i �
−�

�+	i

A���e2kb sinh �e−�m+n��d�

Hence

�n�r,
� = e−�b
m

�− 1�mVm
n �r�eim


where

Vm
n �r� = �− 1�nIm−n��r�Hn

�1��kr� + 
s

fs
nIm−s��r�Js�kr� �16�

Thus, Eq. �15� and orthogonality of 	eim

 give


n

cnVm
n��a� = − Um� �a�, all m �17�

which is a linear system of algebraic equations for the coefficients
cn.

4.3 Far-Field Behavior of �n. We should expect cylindrical
waves in the homogeneous half-space. These arise from the far-
field behavior of n�x ,y�, for x�0. Thus, put

x = − R cos �, y = R sin �, ��� � 	/2

Then, making the substitution k cosh �=k0 cosh s in Eq. �12�
gives �=−k0 sinh s and

n =
1

	i�−�

�+	i

Bn�k0 cosh s;��ek0R sinh�s−i��ds, ��� � 	/2

�18�

where

Bn��;�� =
2��2 − k0

2�1/2 exp	− b��2 − k2�1/2

��2 − k2�1/2 + � + ��2 − k0

2�1/2 � � + ��2 − k2�1/2

�− k� �n

the square roots being defined to have non-negative real parts.
The formula for n, Eq. �18�, is convenient for estimating n

when k0R�1, as we can use the saddle-point method ��16�, Chap.
8�. There is one relevant saddle point at s=s0 where s0= i� 1

2	

+��. As cosh s0=−sin � and sinh�s0+ i��= i, the standard argu-
ment gives

n �
1

	i
Bn�− k0 sin �;��eik0R� exp	 1

2 ik0R�s − s0�2
ds �19�

�� 2

	k0R
ei�k0R−	/4�Bn�− k0 sin �;�� as R → � �20�

where the contour of integration in Eq. �19� passes through the
saddle point.

When �=0, we obtain Bn�−k0 sin � ;0�= ineik0b cos �e−in�.
Then, Eq. �20� agrees with the known far-field expansion of Hn

�1�

��kr�ein
, when one takes into account that 
�	−� and r�R
+b cos � as R→�.

4.4 Near-Field Behavior of �n. As the expression for �n,
Eq. �11�, is similar to Eq. �10�, it is reasonable to ask if �n cor-
responds to a simple image term. To see that it does not, let us
define polar coordinates centered at the mirror-image point,
�x ,y�= �−b ,0�: x=−b+r� cos 
�, y=r� sin 
�. Then, calculations
similar to those described in the Appendix show that

Hn
�1��kr��ein�	−
�� =

�− 1�n

	i �
−�

�+	i

ekx sinh �e−iky cosh �+kb sinh �−n�d�

�21�

for �
���	 /2. The integral on the right-hand side of Eq. �21�
should be compared with the integral defining �n, Eq. �11�. For
them to be equal, the function A���, defined by Eq. �13�, would
have to be constant: It is not, and it is not well approximated by a
nonzero constant. Thus, it is not justified to replace �n with a
simple image term: We notice that Fang et al. �2� used image
terms similar to those on the left-hand side of Eq. �21�, with 	
−
� replaced with 
�.
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5 Discussion
We have outlined how to solve the scattering problem for a

cavity buried in a graded half-space; the result is the infinite linear
algebraic system, Eq. �17�. The system matrix is very compli-
cated: One has to calculate �d /dr�Vm

n �r� at r=a, where Vm
n is de-

fined by Eq. �16� as an infinite series of special functions with
coefficients given as contour integrals. In principle, the system
matrix could be computed but it is unclear whether this is a worth-
while exercise, given the limitations of the underlying model, with
both shear modulus and density varying exponentially; see Eq.
�1�. However, it may be possible to extract asymptotic results
from the exact system of equations for small cavities or for cavi-
ties that are far from the interface: This remains for future work.

Appendix: Integral Representations
As explained in Sec. 4.1, we need to convert from polar coor-

dinates to Cartesian coordinates in order to apply the interface
conditions at x=0. This is done using certain integral formulas.
Thus, from Ref. �17� �p. 178, Eq. �2��, we have the integral rep-
resentation

Hn
�1��kr� =

1

	i�−�

�+	i

ekr sinh w−nwdw �A1�

The integration is along any contour in the complex w-plane,
starting at w=−� and ending at w=	i+�. When w=�+ i�, where
� and � are real, �ekr sinh w�=ekr sinh � cos �. Thus, we can generalize
Eq. �A1� to

Hn
�1��kr� =

1

	i�−�+i�1

�+i�2

ekr sinh w−nwdw �A2�

where the constants �1 and �2 must satisfy

− 1
2	 � �1 �

1
2	 and 1

2	 � �2 �
3
2	

In other words, we have some flexibility in our choice of contour,
flexibility that we shall exploit shortly.

Put w=�+ i�
−	�. Then Eq. �A2� becomes

Hn
�1��kr�ein
 =

�− 1�n

	i �
−�+i�1

�+i�2

e−kr�sinh � cos 
+i cosh � sin 
�e−n�d�

�A3�

where the constants �1 and �2 must satisfy

− 1
2	 � �1 + 
 − 	 �

1
2	 and 1

2	 � �2 + 
 − 	 �
3
2	

In particular, the choices �1=0 and �2=	 show that

Hn
�1��kr�ein
 =

�− 1�n

	i �
−�

�+	i

e−kr�sinh � cos 
+i cosh � sin 
�e−n�d�

for 1
2	 � 
 �

3
2	 �A4�

This is the integral representation that we use in Sec. 4.1.
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Symmetrical Solutions for
Edge-Loaded Annular Elastic
Membranes
The Föppl–Hencky nonlinear membrane theory is employed to study the axisymmetric
deformation of annular elastic membranes. The general solutions for displacements and
stresses are established for arbitrary edge boundary conditions. New exact solution re-
sults are developed for central loading and edge forcing conditions. Both positive and
negative radial stress solutions are found. Comparisons are made for special cases to
previously known solutions with excellent agreement. �DOI: 10.1115/1.3005568�

1 Introduction
The development of nonlinear elastic membrane theory began a

century ago with the work of Föppl �1�. Within this theory, strains
are presumed to be sufficiently small such that linear elastic
stress-strain relations are valid. The nonlinearity arises from the
effects of small rotations of membrane elements. This nonlinearity
is also present in plate theory attributed to Von Karman �2� and
Way �3�, coupling the effects of bending and in-plane stretching.
An important particular application of this theory is that by
Hencky �4�. Hencky provided power series solutions for a flat
circular membrane under uniform vertical pressure in which the
flexural rigidity is neglected.

A more general theory applicable for axisymmetric deformation
including large rotations was developed by Reissner �5,6�. The
range of applicability of the Föppl–Hencky theory and the
Reissner theory for flat annular membrane problems was provided
by Weinitschke �7�. Dickey �8� derived an exact theory for a plane
circular membrane subjected to a vertical pressure, showing that
the Föppl theory corresponded to the first term expansion for the
exact theory.

In other closely related studies, Dickey �9� found axisymmetric
solutions for a circular membrane under normal pressure, employ-
ing a numerical integration scheme. Employing an iterative
method, detailed analyses of an annular membrane under surface
and edge loads were provided by Weinitschke �10�. Existence and
uniqueness of tensile and compressive conditions were examined.
Callegari and Reiss �11� applied a shooting method to solve
boundary value problems for the axisymmetric deformation of a
circular membrane, also examining existence and uniqueness.
Kelkar et al. �12� analyzed a circular membrane with fixed periph-
eral edges; displacement and stresses under three different loading
conditions were found using a finite difference technique.
Grabmüller and Novak �13� developed a refined integral equation
solution technique, proving that tensile solutions may cease to
exist when large radial displacements are prescribed at the inner
radius. As discussed in Sec. 3, this is consistent with our findings.

In this paper we develop new exact axisymmetric solutions for
annular membranes subjected to edge forcing, applying the Föppl
theory. Some exact solutions for annular membrane problems for
loading and edge conditions were first presented by Schwerin
�14�. Of particular interest is Schwerin’s analysis of the problem
of an elastic membrane subjected to a vertical force acting at the
interior of the membrane. Analytical solutions were given with
Poisson’s ratio less than or equal to one-third. We follow closely

the approach of Schwerin, reducing the governing differential
equations to a single nonlinear ordinary differential equation in
terms of a single dependent variable. Both positive and negative
radial stress solutions are found.

Such analyses are motivated by various applications. For ex-
ample, applications of circular membrane theory for indentation
of tires were pointed out by Yang and Hsu �15�. Chen and Cheng
�16� analyzed ponding pressures acting on a circular membrane as
a result of the weight of a liquid filling the space created by the
deflection of a membrane. An outer circular region thus developed
provided the membrane’s self-weight was negligible relative to
the liquid pressure. They developed an iterative technique to solve
for the displacements in both the loaded and unloaded portions of
the membrane.

Indentation problems also arise for marine, land, and air ve-
hicles, when thin plates are subjected to impact loading. A com-
mon hypothesis is that membrane stresses predominate for large
deformations �17�. Circular membrane analyses are a first-order
approximation of the geometry for impact experiments and analy-
ses �12,18�.

Recent applications also include the analysis of circular holes in
nonlinear circular membranes in an effort to analyze the effects of
cavities and implanted rigid fixations introduced into thin tissue
by clinical procedures �19,20�. Annular membrane models are also
used in mechanical testing of soft materials such as polymers,
elastomers, and biomaterials �21� and in the analysis of electro-
static deflection on elastic membranes for microelectromechanical
actuators �22�. Theoretical and experimental results are presented
by Begley and Mackin �23� for the spherical indentation of free-
standing thin films; they also compared their results with the clas-
sical Schwerin-type analyses.

2 Analysis
As mentioned, Schwerin �14� analyzed the problem of an elas-

tic membrane with displacements u and w equal to zero at the
outer radius r=ra. The central region of the membrane 0�r�ri
consisted of a rigid disk subjected to a vertical force resultant of
magnitude P acting at the center of the membrane. The annular
region ri�r�ra was subjected to a uniformly distributed vertical
pressure p. In the following, in a manner similar to that of Schw-
erin, we develop the general solution to the governing differential
equations of the elastic membrane with p=0, as shown in Fig. 1.
Our analysis pertains to the annular region ri�r�ra with loading
provided by the stresses or displacements prescribed at the bound-
aries. Various boundary conditions on displacement or stress can
thus be determined. Solutions for selected displacement boundary
value problems are presented. For the particular case with the
boundary conditions u�ri�=u�ra�=w�ra�=0, our solutions are the
same as those found by Schwerin provided that ��

1
3 . For these
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boundary conditions, we also find that solutions exist for ��
1
3 , in

contrast to Schwerin’s conclusion that axisymmetric solutions ex-
ist only for ��

1
3 .

For axisymmetric plane stress conditions, the circumferential
strain and radial strain are related to the circumferential stress and
radial stress, respectively, by

�� =
1

E
��� − ��r� �1�

�r =
1

E
��r − ���� �2�

The strain-displacement relations are

�� =
u

r
�3�

�r =
du

dr
+

1

2
�dw

dr
�2

�4�

where u is the displacement in the radial direction, and w is the
displacement in the z-direction. Substitution of the expressions for
strain in Eq. �1� into Eq. �3� yields the following displacement-
stress relation:

u =
r

E
��� − ��r� �5�

Differentiating Eq. �5� and substituting this result, along with Eq.
�2� into Eq. �4�, yields

1

2
�dw

dr
�2

=
1

E
��1 + ����r − ��� − r�d��

dr
− �

d�r

dr
�� �6�

The equilibrium of a differential element yields from the summa-
tion of forces in the radial direction

d�r

dr
+

1

r
��r − ��� = 0 �7�

The summation of forces in the vertical direction yields

�r
d2w

dr2 +
1

r
��

dw

dr
= 0 �8�

Equations �6�–�8� involve three nonlinear differential equations of
the first-order in �r and ��, and of the second-order in displace-
ment w. Accordingly, in the applications that follow, the solutions
involve four boundary conditions for the axisymmetric deforma-
tion of the membrane.

The system of equations can be further reduced in several ways.
The most popular approach is to introduce the stress function,
from which we find

�r =
1

r

d�

dr
�9�

�� =
d2�

dr2 �10�

Then, Eq. �7� is satisfied identically, and Eqs. �6� and �8� may be
rewritten, respectively, as

E

2
�dw

dr
�2

+ r
d

dr
�d2�

dr2 +
1

r

d�

dr
� = 0 �11�

and

d

dr
�d�

dr

dw

dr
� = 0 �12�

Equations �11� and �12� are special homogeneous cases of the
nonlinear axisymmetric membrane theory.

An alternative system of equations can be found from Eqs.
�6�–�8� by solving for �� in terms of �r using Eq. �7�

�� =
d�r�r�

dr
�13�

Substituting this result into Eq. �6� yields

E

2
�dw

dr
�2

+ r
d

dr
��r +

d�r�r�
dr

� = 0 �14�

Also, substituting Eq. �13� into Eq. �8� yields

d

dr
�r�r

dw

dr
� = 0 �15�

Tuan �24� used equations in this form in an analysis of ponding of
circular membranes using a fourth-order Runge–Kutta method.
From Eq. �15� and from the equilibrium of the central disk, for the
condition in which no pressure is applied to the annular region, we
find

r�r
dw

dr
+

P

2	h
= 0 �16�

Equations �14� and �16� now correspond, respectively, to Eqs. �5�
and �4� of Schwerin’s article �14�.

Introducing the function

y 	 r2�r

E
�17�

and substituting the above equation into Eqs. �14� and �15� yields,
respectively, two equations for y�r� and w�r�

1

2
�dw

dr
�2

+
d2y

dr2 −
1

r

dy

dr
= 0 �18�

d

dr
� y

r

dw

dr
� = 0 �19�

Fig. 1 Geometry and notation for a center-loaded membrane.
The inner portion provides a net vertical force P. The resulting
edge-loaded annular membrane ri<r<ra is analyzed.
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Integrating Eq. �19� yields the solution for the product

y

r

dw

dr
= 2a1 �20�

where a1 is a constant of integration and the factor 2 is used to
simplify expressions that follow. Further simplification can be
achieved by introducing the new independent variable

x = r2 �21�

A single nonlinear ordinary differential equation for y is then
found by substituting the result �Eq. �20�� into Eq. �18�

y2d2y

dx2 = −
1

2
a1

2 �22�

The physical significance of the constant a1 can be interpreted by
noting that the net vertical force of any circular region of the
membrane is

P = − 2	r
dw

dr
�rh �23�

Then from Eqs. �17� and �20� we find

a1 = −
P

4	Eh
�24�

Note that in the following we address only problems in which
P, and hence a1, are nonzero. This also implies, from Eq. �22�,
that �d2y /dx2��0. By introducing the nondimensional variable V,

V 	 − K1y �25�

where K1= �1 /ra
2�
3 �2ra

2 /a1
2�, and the nondimensional independent

variable 
,


 	
x

ra
2 �26�

Equation �22� is now reduced to the equivalent form

d2V

d
2 =
1

V2 �27�

By introducing

� 	
dV

d

�28�

we find

�d� =
1

V2dV �29�

Integrating Eq. �29� yields

1

2
�2 = −

1

V
−

a2

2
�30�

where a second constant of integration a2 has been introduced.
From Eqs. �28� and �30� we also find

d
 = �
1

2

dV


−
1

V
−

a2

2

�31�

Integration of Eq. �31� yields, with the introduction of a third
integration constant a3,


 + a3 = �
1

2
� dV


−
1

V
−

a2

2

�32�

The result of the integration of the right-hand side of Eq. �32�
depends on whether a2 is less than, greater than, or equal to zero.
We introduce two parameters for conditions with a2 nonzero

 	 2 cot−1� 1

a2


−
2

V
− a2�, a2 � 0 �33�

� 	 2 tanh−1� 1

− a2


−
2

V
− a2�, a2 � 0 V � 0 �34�

� 	 2 coth−1� 1

− a2


−
2

V
− a2�, a2 � 0 V � 0 �35�

Equation �32� yields, using Eqs. �33�–�35� respectively,


 + a3 = � � 1

a2
��3/2�

�sin  − �, a2 � 0 �36�


 + a3 = � � 1

− a2
��3/2�

�sinh � + ��, a2 � 0 V � 0 �37�


 + a3 = � � 1

− a2
��3/2�

�sinh � − ��, a2 � 0 V � 0 �38�

A fourth solution exists when a2=0 in the form


 + a3 = �

2

3
�− V��3/2�, a2 = 0 �39�

Expressions for V in terms of  and � are found from Eqs.
�33�–�35�, respectively,

V = −
1

a2
�1 − cos �, a2 � 0 �40�

V = −
1

a2
�1 + cosh ��, a2 � 0 V � 0 �41�

V =
1

a2
�cosh � − 1�, a2 � 0 V � 0 �42�

Solutions for the vertical displacement are now determined
from Eq. �20�, which can be rewritten as

dw

d

= −

1

V

3 2a1ra

2 �43�

Integration of Eq. �43� upon substitution of either Eqs.
�39�–�42�—as the case may be—yields

w + a4 = � 
3 2a1ra
2 1

a2

, a2 � 0 �44�

w + a4 = � 
3 2a1ra
2 1

− a2

�, a2 � 0 V � 0 �45�

w + a4 = � 
3 2a1ra
2 1

− a2

�, a2 � 0 V � 0 �46�

w + a4 = � 
3 2a1ra
2
− 2V, a2 = 0 �47�

The constant of integration a4 represents a vertical rigid body
translation. Solutions for the horizontal displacement are now de-
termined from Eq. �5�, which can be rewritten as

u =
1

K1ra



��2
−
2

V
− a2 +

V



�1 + ��� �48�

Substitution of Eqs. �39�–�42� yields the radial displacement
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u =
1

K1ra



��2
a2cot


2
−

�1 − cos �

a2

�1 + ���, a2 � 0

�49�

u =
1

K1ra



��2
− a2tanh
�

2
−

�1 + cosh ��

a2

�1 + ���,

a2 � 0 V � 0 �50�

u =
1

K1ra



��2
− a2coth
�

2
+

�cosh � − 1�

a2

�1 + ���,

a2 � 0 V � 0 �51�

u =
1

K1ra



��2
−
2

V
+

V



�1 + ���, a2 = 0 �52�

Note that from Eqs. �17� and �25�, V is of the opposite sign of the
radial stress �r. Positive values of V thus correspond to negative
radial stress, changing the stability state of the membrane �25,26�.

3 Results and Discussion
In this section, a membrane with uniformly distributed load

around an inner circumference is studied. For all the calculations
shown in the following figures, Young’s modulus, the outer radius,
and the thickness of the membrane of 1 are assumed. This is
equivalent to nondimensionalizing the stresses �̄= �� /E�, vertical

force P̄= �P /Ehra�, and displacements ū= �u /ra� and w̄= �w /ra�.
First, the relationships between the vertical displacement w�r�

and the net force P applied uniformly around the inner circumfer-
ence with various Poisson’s ratios are examined. The boundary
conditions are

• w�ri� is prescribed
• w�ra�=0
• u�ra�=0
• u�ri�=0

Force-displacement relations are shown for �ri /ra�=0.5 in Fig.
2. A system of simultaneous equations must be solved to obtain
these solutions. The system of equations depends on the signs of
the constant a2 and variable V. One particular method we found
efficient is to first solve for a1 in terms of a given vertical force P

using Eq. �24�. This also provides a value for K1. Evaluating 
 at
the inner and outer boundaries yields values of 
1=0.25 and 
2
=1, respectively. Substituting these values into Eq. �36� yields two
expressions for �1 and �2, as follows �assuming that a2�0�:

0.25 + a3 = � � 1

a2
��3/2�

�sin 1 − 1�, a2 � 0 �53�

1 + a3 = � � 1

a2
��3/2�

�sin 2 − 2�, a2 � 0 �54�

Two more equations from the boundary condition on the radial
displacement at the inner and outer edges being zero yield from
Eq. �49�.

0 =
1

K1


0.25��2
a2cot
1

2
−

�1 − cos 1�
0.25a2

�1 + ��� �55�

0 =
1

K1
��2
a2cot

2

2
−

�1 − cos 2�
a2

�1 + ��� �56�

This system involves four equations in four unknowns �1, �2,
a2, and a3. These equations are solved using MATLAB package
�27�. The boundary condition for w�ra�=0 yields from Eq. �44�

a4 = � 
3 2a1
1


a2

2 �57�

Equation �44� can then be applied to determine the displacement
at the inner boundary for the given applied force, specifically.

w�ri� = � 
3 2a1�0.25�2 1

a2

1 − a4 �58�

Note that our solutions for Poisson’s ratios, ��
1
3 are in full

agreement with Schwerin’s �14�. However, we find that axisym-
metric solutions for ��

1
3 exist as per Eqs. �46� and �51�. As

indicated, larger Poisson’s ratios increase the stiffness of the
membrane. Figure 3 shows the displacement u�r� for the same
boundary conditions with various Poisson’s ratios with w�ri�
=0.1. Note that only for �= 1

3 is u�r�=0. Maximum horizontal
displacements are about three-orders of magnitude smaller than
the maximum vertical displacement.

In order to establish the physical significance of the integration
constant a2, we studied the special case with �ri /ra�=0.5, the outer
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Fig. 2 Vertical force P, applied at the inner boundary versus
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edge displacement is zero, and the inner edge nondimensional
vertical displacement fixed at 0.1. Figure 4 shows results as the
inner radial displacement is varied for three different Poisson’s
ratios. The general trend is for the constant a2 to increase as the
inner radial displacement increases. This implies that as the radial
membrane tensile strains increase, the constant a2 increases for a
given inner vertical displacement. This behavior is also reflected
in Fig. 5 where Poisson’s ratio is held at 1

3 and the inner vertical
displacement is varied.

In a wider region of a2, we note that there is a discontinuity in
solutions with a2�1 as shown in Fig. 6. These solutions involve
large slopes dw /dr, and are thus beyond the scope of the Föppl
theory. Also as seen from Fig. 6, multiple solutions exist. In ad-
dition to the solution with V�0 �tensile radial stress�, two solu-
tions can be found for a single value of a2. Two particular solu-
tions for V�0, which corresponds to compressive radial stresses,
are labeled A and B in Fig. 7. Point A corresponds to solutions
from Eqs. �45� and �51� using the negative of the � option, hence
the “top” label in the figure. Point B corresponds to solutions
using the positive option. The solutions for vertical displacement
versus radial position are shown in Fig. 7. Note that the positive

radial displacements are found at r=ri=0.5. This results in com-
pressive values of radial stress. The resulting radial and circum-
ferential stresses are shown in Fig. 8.

Comparisons of our results are also made to previous results of
other authors. As shown in Table 1, nondimensionalized radial and
circumferential stresses and vertical displacement agree very well
with the results of Schwerin �14� for u�ri�=u�ra�=0, w�ra�=0
and P=12.57. We take the same nondimensionalized method
that Schwerin used: �r= ��r /E� ·
3 �32	2E2h2ra

2 / P2�, ��

= ��� /E� ·
3 �32	2E2h2ra
2 / P2�, and w̄= �w /ra� ·
3 �2	rahE / P�. Also,

the result of Tuan �24� with ponding radius equal to b
=90.53 cm, radial and circumferential stresses at the outer bound-
ary a=185.70 cm, are compared in Table 2. Differences of only
2.70% and 2.50% in radial and circumferential stresses, respec-
tively, are found between the present results and those of Tuan’s.
This is presumably due to the calculation accuracy differences
between the analytical and numerical methods.

We also examine frictionless indentation of a circular mem-
brane. A rigid circular indentor of radius ri is presumed to have no
frictional stress between it and that portion of the membrane in
contact with the indentor. The flat membrane in contact with the
indentor is thus subjected to in-plane stresses and for a given
indentation state a point at the indentor edge, denoted by r=rc, is
defined by u�rc�+rc=ri.
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For a given rc and ri, the radial stress in the contact portion of
the radial membrane is determined. This stress is then matched
with the inner portion of the unloaded annular membrane. By
varying the transition point rc, the resulting vertical force can be
determined to provide the results shown in Fig. 9. Comparing
Figs. 9 and 2, smaller pressure is needed for the same displace-
ment in the frictionless case, as expected.

4 Conclusion
The nonlinear elastic annular membrane problem was solved

for the prescribed edge loading. Analytical solutions were pro-
vided with particular emphasis on solutions for various values of
the constant a2. Vertical and horizontal displacements, and radial
and circumferential stresses of the membrane were determined.
Bifurcation of solutions occurred for some cases in which a2�0.
Also the small slope assumptions of the Föppl theory corre-
sponded to a limited range of the constant a2. Further comparisons
were made to the results of Schwerin �14� and Tuan �24� with
excellent agreement.
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An Inviscid Solution for Modeling
of Tornadolike Vortices
An inviscid tornadolike vortex is analytically modeled using a free narrow jet solution
combined with a modified Rankine vortex. An empirical and simplified solution to existing
models is defined for flows similar to the ones simulated in Ward-type vortex chambers.
Velocity profiles are calculated for a particular swirl ratio Sr�0.28. The model shows
reasonable agreement with existing experimental measurements by Baker (1981, “Bound-
ary Layers in Laminar Vortex Flows,” Ph.D. thesis, Purdue University, West Lafayette,
IN) and the numerical simulation by Wilson and Rotunno (1986, “Numerical Simulation
of a Laminar End-Wall Vortex and Boundary Layer,” Phys. Fluids, 29(12), pp.
3993–4005). �DOI: 10.1115/1.3063632�
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1 Introduction
Analytical models of tornadolike vortices are attractive alterna-

tives to experimental and numerical simulations due to their rela-
tive simplicity and therefore use in desk-top engineering oriented
solutions. There are several simple analytical vortex models avail-
able in literature �1�. The simplest analytical model cited by Ward
�2� is a sink-vortex expressed by

�u + v�r = A + B = const �1�

where u and v are the radial and swirl �or tangential� components
of the velocity and r is the radius of the vortex. This model can
also be interpreted as ur=A and vr=B. The product ur is constant
due to continuity in a two-dimensional flow and vr is constant due
to conservation of angular momentum. Clearly, the updraft motion
is not included in this model. Another simple model, the modified
Rankine vortex, reasonably approximates the swirl motion of the
vortex:

v�r� =
�

�

r

rc
2 + r2 �2�

where � is the circulation considered as a constant and rc is the
radius of the vortex core.

Moreover, a three-dimensional model of the vortex was devel-
oped by Kuo �3�. The solution for the tangential velocity is similar
to the laboratory model developed by Ying and Chang �4�. These
solutions were further simplified and adopted to a wind engineer-
ing oriented study by Wen �5�.

The Burgers–Rott model �6,7� is a more sophisticated model
combining an inviscid stagnation flow �away from the wall, mo-
tion in the r-w plane� and a decayed line vortex �swirl direction�
to determine the three velocity components:

u = − Cr, w = 2Cz, v =
�

2�r
�1 − e−Cr2/2�� �3�

where C is a strength constant and � is the kinematic viscosity.
There are also some solutions combining vortex sinks �motion in
the x-y plane� and axial flow �w direction�. Shtern et al. �8� de-
rived a class of solutions and applications including the vortex
flow field modeling. Their streamline equation reads

z/r0 = z0/r0 + a�r/r0�2 + b�r/r0�Re+2 + c�r/r0�4 �4a�

� = �0 + S ln�r/r0� �4b�

where a=Wc�2 Re�−1, b=Wr�Re�Re+2��−1, c=Wp�4 Re�−1, and
the swirl parameter S=� /Re. There are five dimensionless param-
eters: Re �Reynolds number�, � �swirl Reynolds number�, Wc �a
free parameter characterizing the uniform part of the axial flow�,
and Wr and Wp �characterizing the nonuniform shear of the axial
velocity included by the axial advection and the radial pressure
gradient, respectively�. Lewellen and Lewellen �9,10� derived an
idealized analytical model to explore the region of corner vortex
flow and to explain the near surface intensification of the vortices.
Moreover, a multitude of numerical simulations �e.g., Wilson and
Rotunno �11� and Lewellen et al. �12,13�� and generic experi-
ments of the vortices in tornado vortex chambers �TVCs� �e.g.,
Ward �2�, Davies-Jones �14�, Church et al. �15�, and Baker �16��
were performed to determine the flow field associated with the
vortices.

Herein, we combine a free narrow jet model and a modified
Rankine vortex to provide simple algebraic expressions for the
vortex model. Then, we use existing experimental measurements
and numerical results to approximate the model’s constants and to
obtain physically fitted solutions. The obtained model is intended
to provide more robust but compact solutions for engineering ap-
plications.

2 A Simple Inviscid Jet-Vortex Model
The vortex flow field is a complex three-dimensional flow field.

A model of a jet away from a wall describes a two-dimensional
motion �radial and axial�, while a combined Rankine vortex de-
scribes essentially a one-dimensional swirl �tangential� motion. A
three-dimensional vortex flow can therefore be constructed as a
combination of a two-dimensional jet flow and a swirl flow mod-
eled separately.

2.1 Motion in r-z Plane

2.1.1 Stokes’ Stream Function. At first, all length scales are
nondimensionalized by the vortex radius at the influx boundary
Rref and all velocities are nondimensionalized by the radial influx
velocity uref at the radius Rref. With � denoting the dimensional
variables, we define the following:

r =
r�

Rref
, z =

z�

Rref
, u =

u�

uref
, w =

w�

uref
, v =

v�

uref
�5�

According to Schlichting �17�, Stokes’ stream function expressed
by
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��z,r� = Dzg� r

z
� �6�

can be used to describe a flow similar to an upward narrow free
jet. Stokes’ stream function for a simple Gaussian flow can be
expressed by

g�r� = 1
2 �1 − e−r2

� �7�

Using Eq. �7� as a function of the similarity variable r /z in Eq.
�6�, we obtain

��z,r� = Dz�1 − e−�r/z�2
� �8�

Equation �8� satisfies two boundary conditions: �=0 at r=0 and at
z=0. With the influx condition

u = − 1 at r = 1 �9�

the constant D in Eq. �8� is determined �D=−1�. Then we obtain

��z,r� = z�e−�r/z�2
− 1� �10�

2.1.2 Velocities. The radial and axial velocities can be directly
derived from Eq. �10� and expressed by

u�z,r� =
1

r

��

�z
= �1

r
+

2r

z2 �e−�r/z�2
−

1

r
�11a�

w�z,r� = −
1

r

��

�r
=

2

z
e−�r/z�2

�11b�

2.2 Swirl Motion. A combined Rankine vortex expressed by
Eq. �2� can be used to describe the swirl motion of the vortex.
According to Ward �2�, the radius of the vortex core, rc, can be
expressed by

rc = r0 sin2 � �12�

where r0 is the radius at the influx boundary of the control volume
and � is the influx angle expressed as

� = arctan�v0

u0
� �13�

where u0 and v0 are the radial and tangential components of ve-
locity at the influx boundary. The most important nondimensional
parameter, the swirl ratio �Sr�, is defined as

Sr =
v0

2u0
�14�

Then, the radius of the vortex core becomes

rc = r0 sin2�arctan�2Sr�� = sin2�arctan�2Sr�� �15�

where r0=1 is used at the influx boundary. Substituting Eq. �15�
into Eq. �2�, and keeping in mind that for r=1, u0=1, we obtain

v�r� = 2Sr�rc
2 + 1�

r

rc
2 + r2 �16�

Observations and numerical simulations �2,11� suggest that the
radius of the vortex core, rc, is not constant with height. Consid-
ering a funnel-shaped vortex, the core radius will become zero at
the funnel tip. Assuming the funnel tip to be at the origin, a func-
tion of z, f�z���0,1�, is required to transform a cylindrical swirl
vortex to a funnel-shaped vortex:

f�z� =
zm

zm + H
�17�

where m and H are empirical constants. The height z at which the
full core is reached increases with H. Following a best fit of Bak-
er’s test data �11�, the two empirical parameters in Eq. �17� were
set at m=0.05 and H=4. Then, the core radius of the vortex funnel
can be expressed by

rc�z� =
z0.05

z0.05 + 4
sin2�arctan�2Sr�� �18�

And Eq. �16� becomes

v�z,r� = 2Sr�rc
2�z� + 1�

r

rc
2�z� + r2 �19�

Equations �11� and �19� then describe the three-dimensional flow
field of a vortex.

2.3 Flow Field Calculation Results

2.3.1 Surface Flow. As z and rc tend to 0, a limit inviscid
result can be obtained from Eqs. �11� and �19� as follows:

u�0,r� = −
1

r
w�0,r� = 0 v�0,r� =

2Sr

r
�20�

Here the model recovers an exact sink-vortex in Eq. �1� with a
=−1 and b=2Sr.

2.3.2 Flow Field in a Finite Domain. Stokes’ stream function,
vorticity, and the three components of velocity can be computed
in the flow domain. In order to compare the model with available
experimental data �11�, a swirl ratio Sr=0.28 is chosen. The vor-
ticity equation can be derived as

� =
1

r
� �u

�z
−

�w

�r
� =

2r

z3 e−�r/z�2�1 +
2r2

z2 � �21�

A convergent layer is presented near the ground and a divergent
upward flow above that are clearly revealed by Stokes’ stream
function �Fig. 1�. The highest vorticity is concentrated near the
origin in the proximity of the singularity �Fig. 2�. Away from the
axes, vorticity decreases rapidly. The axial velocity �Fig. 3� de-
creases with increasing height z. Radial velocities �Fig. 4� show
two distinct regions: negative values at low levels, representing
convergent inflow toward the vortex core, and positive values
above associated with divergent outflow from the vortex. The ra-
dius of the free vortex in the center of Fig. 5 increases gradually
and reaches a limit value corresponding to Eq. �16� as z increases.
As shown in Fig. 6, an approximate unity profile ��u�=1� is pre-
sented up to z=0.4. The influx velocity profile resulting from a
modified model �see Sec. 3� is also shown.
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3 Flow Field Modeling of a Ward-Type Vortex
Chamber

3.1 Empirical Model. In order to model the flow field in the
inviscid region of a Ward-type vortex chamber, we consider a
weighted combination of two similarity functions �the first and
second powers of the similarity parameter �r /z�:

��z,r� = WA1zB1�e−C1�r/z� − 1� + �1 − W�A2zB2�e−C2�r/z�2
− 1�

�22�

where W is a weighting function. The constants A1, A2, B1, B2, C1,
and C2 can be found by a least squared error fit with experimental
or numerical measurements. Herein the fit is based on the test data
by Baker and the numerical results by Wilson and Rotunno �11�
providing three radial profiles at z=0.075, 0.25, and 0.625 and
four vertical profiles at r=0.0475, 0.1025, 0.2125, and 0.75. This
gives �A1 ,A2 ,B1 ,B2 ,C1 C2�= �0.8,4.6,1.2,2.2,0.39,0.62� lead-
ing to the following empirical model of the flow field:

��z,r� = 0.8Wz1.2�e−0.39�r/z� − 1� + 4.6�1 − W�z2.2�e−0.62�r/z�2
− 1�

�23�

u�z,r� =
1

r

��

�z
= 0.8W�1.2z0.2

r
�e−0.39�r/z� − 1� +

0.39

z0.8 e−0.39�r/z��
+ 4.6�1 − W��2.2z1.2

r
�e−0.62�r/z�2

− 1� +
1.24r

z0.8 e−0.62�r/z�2�
�24�

w�z,r� = −
1

r

��

�r
= 0.31W

z0.2

r
e−0.39�r/z� + 5.7�1 − W�z0.2e−0.62�r/z�2

�25�

v�z,r� = 2Sr

r�rc
2�z� + 1�

rc
2�z� + r2

z

z + 0.05
�26�

Equation �26� is obtained by multiplying Eq. �19� with an em-
pirical fitted function of �0–1� based on the two data sets used.

0.1

0.1

0.1

0
.1

1

1

1

1

1

1

1

1
0

10

1
0

10

10

100

100

1
0

0
0

r

z

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2 Vorticity contours „the values from the core to outside
are 1000, 100, 10, 1, and 0.1…

0.5

0.5

0
.5

0
.5

1

1

1

1

2

2

3

3

4
5

6

81
0

1
2

1
4

r

z

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fig. 3 Contours of axial velocities „the values are 64, 32, 8, 6,
5, 4, 3, 2, 1, and 0.5…

-6-5
-4-3

-2

-1

-0
.5

-0.5

0

0

0

0

0
.1

0
.1

0.1

0
.1

0.
1

0.1

0
.2

0
.2

0.2

0.
3

0.3

0
.4

0.4

0.5

1

r

z

0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 4 Contours of radial velocities „the values from the lower
are �10, �5, �4, �3, �2, �1, �0.5, 0, 0.1, 0.2, 0.3, 0.4, 0.5, and
1…

1
1

1

2
2

2

3
3

3

3
3

3

4
4

4

4
4

4

5
5

5

5
5

5

6
6

6

r

z

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5 Contours of typical swirl velocities „Sr=0.28… „the val-
ues from the higher are 6, 5, 4, 3, 2, and 1…

Journal of Applied Mechanics MAY 2009, Vol. 76 / 031011-3

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Alternatively, a power or logarithmic law boundary layer function
can be used to fit the data. The weighting function is chosen such
that the second power term dominates in the core region and dis-
appears for larger radius,

W = 1 − e−�Kr/rc� �27�

K=0.9 is used in the above fitting.

3.2 Flow Field Calculation Results and Comparison. Com-
parisons of velocity profiles at various radial positions and heights
are shown in Figs. 7 and 8, respectively. Figures 7�a�–7�d� com-
pare the velocity variation versus z at several radial positions. The
thickness of the boundary layer in the experiment is about z
=0.025 slightly increasing radially. The empirical model matches
well with both test and numerical simulation. The comparison is
better for small radii �Figs. 7�a�–7�c�� than for the larger radius
�Fig. 7�d��, indicating a better fit for the core region than for the
outer region. This can be overcome if more data sets for the outer
region would be used to fit the model constants or by using a
weighting function on the experimental input data. Figure 8 com-
pares the velocity variation with radius for three heights �z
=0.075, 0.25, and 0.625�. Overall, the comparisons for all the
three velocity components are reasonable both for the tendency
and the magnitudes.

4 Concluding Remarks and Discussions
An inviscid solution of the vortex is obtained by combining a

narrow free jet and a modified Rankine vortex. The two solutions
are connected by the dominant flow characteristic, the swirl ratio
Sr. The model’s constants are modified using a least squared error
fitting based on the experimental measurements by Baker and
CFD simulation by Wilson and Rotunno �11�. The model-based
velocity components are compared with the experimental data and
CFD output, which indicates reasonable agreement. This model
has inherent limitations related to its inviscid character and its
dependency on available data sets. Experimental inputs �particu-
larly for different swirl ratios� are expected to improve the robust-
ness of the proposed model.
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numerical simulation…: „a… r=0.0475, „b… r=0.1025, „c… r=0.2125, and „d… r=0.75
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Wen’s simplified equations �5� set u component to zero for the
zone out of the viscous boundary layer, which is not suitable to
describe the wind velocity profiles in a Ward-type vortex chamber.
The Burgers–Rott model �6,7� described the u and w components
with the simple stagnation flow equations �see Eq. �3��, without
matching the experimental profiles for u and w. The present model

provides more flexibility to fit all the three velocity components to
experimental or numerical wind fields.
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Nomenclature
C � strength constant
H � experimental fitted parameter
m � experimental fitted parameter

Rref � vortex reference radius, m
r� and z� � radial and axial coordinates, m

r, �, and z � dimensionless radial, azimuthal, and
axial coordinates; r=r� /Rref, z=z� /Rref

rc � radius of the vortex core
r0 � dimensionless radius at influx boundary,

r0=1
Sr � swirl ratio

u�, v�, and w� � radial, azimuthal, and axial velocities,
m/s

uref � radial influx velocity at the inlet of the
Ward-type vortex chamber, m/s

u, v, and w � dimensionless radial, azimuthal, and
axial velocities, u=u� /uref, w=w� /uref

u0 � radial influx velocity at r=1

Greek Symbols
� � kinematical viscosity, m2 /s
� � circulation of vortex
� � Stokes’ stream function
� � vorticity function
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Design and Manufacture of a
Morphing Structure for a
Shape-Adaptive Supersonic Wind
Tunnel Nozzle
Aerospace vehicles with fixed geometry are designed to operate at a predetermined flight
condition. Variation of the aerodynamic environment, such as during acceleration, climb-
ing, or turning, from the design condition reduces the efficiency of the vehicle. It would be
advantageous to be able to adapt the vehicle geometry to maintain efficient flight over a
range of aerodynamic conditions. Morphing sandwich structures offer sufficient strength
and stiffness to serve as aerodynamic surfaces, while providing the shape-changing au-
thority to attain a range of surface profiles without additional joints or seals. As a
demonstration of the morphing concept in a supersonic environment, this paper describes
the construction and testing of a morphing nozzle for a supersonic wind tunnel, which
has been designed to operate isentropically over a Mach range from 2.5 to 3.8. The
nozzle has been installed and operated in this Mach number range and the experimental
results are presented. �DOI: 10.1115/1.3005572�

1 Introduction

The performance of an air-breathing hypersonic engine, either a
ramjet or a scramjet, is very sensitive to the aerodynamic condi-
tions at the inlet, which involve multiple shocks, high heating, and
large aerodynamic forces. Air is compressed and accelerated
through a shock system forming on the vehicle forebody and at
the entrance to the inlet. The shock structure must accelerate the
air to the required velocity while maintaining the total pressure
and minimizing the turbulence and boundary layer growth and
separation. Due to this complexity, a fixed-geometry inlet cannot
be optimally shaped for all flight conditions and hence will lose
efficiency when the vehicle is not flying at the designed combina-
tion of Mach number, angle of attack, and altitude. Deleterious
shock structures, such as a Mach reflection, may also form and
choke the inlet. Boundary layer separation due to the inclement
operating circumstances results in loss of total pressure at the
inlet. These problems, and the resulting loss of efficiency, may be
remedied by employing a shape-adaptive inlet, which can change
its geometry to maintain an optimal shape for the changing flight
conditions. However, present systems for shape changing involve
complex joints, seals, and gaps, which are difficult to construct
and have a negative impact on the local fluid dynamics.

Shape morphing concepts based on sandwich structures with
actuated core members have continuous surfaces, which eliminate
the problems associated with joints and gaps. Moreover, these
structures can be morphed to achieve profiles with continuous
curvature, which is important for shock control. Such morphing

structures were proposed by �1� and demonstrated by �2�. The
cellular core sandwich panels upon which these structures are
based are described in detail in Refs. �3–5�.

A shape-changing nozzle for a supersonic wind tunnel is a dem-
onstration of the capabilities of morphing sandwich structures in
an aerodynamic context. The ability of a morphing surface to
conform to an aerodynamic shape, which is sensitive to small
errors, will be shown. Furthermore, the morphing nozzle is a prac-
tical demonstration of a ramjet inlet operating in reverse: That is,
the nozzle produces an isentropic acceleration from subsonic to
supersonic velocity, while the ramjet inlet decelerates air from
supersonic to subsonic velocity �in the reference frame of the
vehicle�. In order to apply shape morphing theories to aerody-
namic systems, a morphing wind tunnel nozzle has been built; see
Fig. 1.

This paper is organized as follows: First, the aerodynamic pro-
files needed for the wind tunnel will be explicated. A discussion of
the analytical background necessary to fit the morphing structure
to desired aerodynamic shapes follows. The third component de-
scribes the manufacture of the morphing structure and installation
in the existing wind tunnel. Fourth, experimental results of the
preliminary assessment of the wind tunnel performance will be
reported. Finally, some limitations of these techniques are enu-
merated.

2 Determination of the Aerodynamic Shapes
Computational fluid dynamics �CFD� was used to determine

ideal aerodynamic profiles for shock-free isentropic expansion at
several Mach numbers. An inviscid code was used to determine
the surface geometry, which was then modified for boundary layer
thickness. The adjoint optimization methods used to calculate the
optimal shapes are described in Refs. �6,7�. The nozzle shapes
were designed with fixed exit dimensions, allowing the throat area
to vary between Mach numbers. The reduction in effective exit
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area due to boundary layer growth on the curved surface was
accounted for in these curves by a slight enlargement of the exit
area, deviating from the inviscid isentropic throat-to-exit ratio for
each Mach number. The aerodynamic calculation was performed
only in the supersonic region beyond the throat; as a consequence,
the nozzle curvature was mirrored at the throat to produce the
subsonic converging nozzle profile. In order to connect the nozzle
to a pre-existing wind tunnel ejector system, a demonstration ge-
ometry with a 445 mm nozzle length, 50.8 mm width, and
48.5 mm exit height was chosen. All examples described herein
utilize this geometry. For the purposes of the current design,
nozzle curves were computed for Mach 2.5, Mach 3, and Mach
3.8 flow speeds; these shapes are presented in Fig. 2. The origin in
the figure is taken to be at the curved wall at the connection
between the nozzle and the diffuser.

3 Approximating Aerodynamic Surfaces With
Morphing Structures

The structure to be used for the morphing wind tunnel nozzle is
based on a corrugated sandwich beam, which has been demon-
strated by �8�. As such, it changes shape in one dimension only;

other morphing structures based on Kagome core geometries can
change shape in two directions �1,2�. In all cases, the shapes at-
tainable through these morphing concepts involve only bending of
the passive surface; that surface is not stretched or compressed.
The structure described herein, and shown schematically in Fig. 3,
has a core composed of vertical and oblique members, which
provide actuation and shear stiffness, respectively, and are pin
connected to transmit only axial forces. The aerodynamic surface
is a continuous curved beam of streamwise length �, connected to
the actuated and oblique members at unequally spaced nodes. In
the neutral position, the surface conforms to the shape for a Mach
3 expansion and can be morphed into the correct profiles for isen-
tropic expansions to other Mach numbers.

With this structural concept, a critical design challenge is to
choose the best configuration of the actuators so that the initial
structure can morph to approximate most closely the nozzle
shapes for operation at other Mach numbers. It is emphasized that
the morphing structure can attain only a limited family of shapes
because only a finite number of locations are controlled through
actuation; within this family, the shape that best achieves the de-
sired function of the nozzle must be selected. This is accom-
plished by calculating the geometric changes, which can be
achieved by small displacements of individual actuators, finding
the best combination of actuator displacements for given actuator
locations, and then shifting the actuator positions in a manner that
improves the surface shape approximation. Because the required
shape changes and slopes are small, it is assumed that it is pos-
sible to sum linearly the deformations of the morphing surface due
to deflections from individual actuators. The desired shape of the
aerodynamic surface, calculated by CFD, is defined as ��x�,
where x is distance from the diffuser in the direction opposite the
flow �the antistreamwise direction�. The ideal shape ��x� will be
approximated by ��x� that belongs to the family of curves which
can be obtained by deflections of the actuators in the morphing
structure. In this work, an approximation is found in the least-
squares sense, which means that the cost function �,

� =�
0

l

�� − ��2dx �1�

is a minimum. The function ��x� is expressed as ��x�=ai�i�x�
�utilizing the usual summation convention�, where the �i are the
linearly independent, and linearly summable, shape functions gen-
erated by displacements of the individual actuators. The �i are
functions of the actuator configuration, the geometry of the mor-
phing surface, and the boundary conditions, while the ai are con-
stant coefficients. For the structure displayed in Fig. 3, the shape
functions are linear sums of the deflected shapes of cantilever
beams fixed at the leftmost end and subjected to a unit displace-
ment at one actuator location �see Fig. 4�, while displacements at
the other actuator locations are prohibited. A full set of shape

Fig. 1 A photograph of the morphing nozzle as installed in the
in-draft wind tunnel. Visible are the curved morphing surface,
the actuators, and the linear potentiometers used to control the
system position.
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Fig. 2 The desired shapes for the morphing wind tunnel
nozzle. The nozzle is manufactured to conform to the Mach 3
shape and must be morphed to attain the Mach 2.5 and 3.8
shapes. The antistreamwise distance is the length from the
connection between the diffuser and the nozzle in the direction
opposite the flow. The throat of the nozzle is found at x
=445 mm.

Fig. 3 Isometric drawing of a morphing sandwich structure
with actuators. The curved surface and the rigid back plate
constitute the sandwich faces, while the oblique members and
the vertical tie rods are the low-density sandwich core. The
actuators are the rectangular elements of the vertical tie rods.
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functions is shown in Fig. 5 for the demonstration surface with
seven equispaced actuators.

Once the �i have been found, the Rayleigh–Ritz method is used
to determine the constant coefficients ai by simultaneously solving
the equations

��

�ai
= −�

0

l

2�� − aj� j��idx = 0 �2�

This is achieved through the solution of the linear system bijaj
=ri, where

bij =�
0

l

�i� jdx �3�

and

ri =�
0

l

��idx �4�

The solution vector ai provides the mixture of the �i required to
approximate most closely in the least-squares sense the desired
surface profile � for the given functions �i, which depend on the
actuator locations. The vector ai can therefore then be used to
determine the optimal displacements of the individual actuators.
This procedure assumes that the passive surface obeys elastic
beam theory and that the surface is subject only to small deflec-
tions such that the surface displacements due to individual actua-
tors can be superposed, and such that the longitudinal deflections
of the joints at which the surface is connected to the actuators are
small and can be neglected.

The approximation can be improved by varying the locations of
the actuators. If the actuator locations are given by �i, then the
gradients of the cost function �� /��i are calculated numerically
given the present location of the actuators. The positions of the
actuators are then adjusted using a path of steepest descent, the
cost function is recalculated, and the process is iterated. While this

is guaranteed to improve the solution and eventually find a local
minimum, finding the global minimum is not assured.

The morphing nozzle must change from the initial Mach 3 ge-
ometry to both the Mach 2.5 and the Mach 3.8 geometry. The
three required shapes are shown in Fig. 2. Because the nozzle is
constructed to conform to the Mach 3 shape, the actual morphing
needs only to produce the deflections equivalent to the difference
between the Mach 3 shape and either the Mach 2.5 or the Mach
3.8 shape. These difference curves are shown in Fig. 6. In both
cases, a slight “cusp” is evident at the throat of the nozzle. This is
a consequence of the technique used to calculate the curves and
the necessity of extending the curves into the subsonic region
before the throat. Utilizing the optimization procedure described
above, the initial set of shape functions is modified and the quality
of the shape change is improved. During the optimization proce-
dure, the lengths of the intervals between actuators evolve from
the initial equal spacing of 68 mm. Figure 7 shows the progress of
these changes for the shape change from Mach 3.0 to Mach 3.8.
The curve labeled “Interval 1” refers to the length of the space
between the fixed end of the nozzle and the first actuator. Note
that for manufacturing reasons, a minimum actuator spacing of
45 mm has been imposed. After approximately 1000 iterations, a
steady state is reached. Comparing these interval lengths with the
difference curves in Fig. 6 shows that the actuator spacing is re-
duced in regions where the curvature of the difference curves is

Fig. 4 A flat cantilever beam with seven evenly spaced inde-
pendently movable nodes. The shapes attainable by this con-
figuration comprise the family of allowable shapes for the mor-
phing wind tunnel surface.
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Fig. 5 A set of shape functions for a morphing aerodynamic
surface with seven equally spaced actuators
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greatest. The resultant best fits are shown in Fig. 6, for compari-
son to the desired shapes. The differences between the desired
shapes and the best shape attainable with this morphing structure
are presented in Fig. 8. The maximum error in the fit is small,
approximately 100 �m, but occurs at the throat of the tunnel.

Some comment on the differences between the desired shapes
and the optimal shapes is required. Because of the CFD technique
used to calculate the desired shapes, only the supersonic region
beyond the throat of the nozzle was designed. The inlet region
prior to the throat was taken to be a mirror image of the region
immediately downstream of the throat. This leads to the cusps
evident in the difference curves at the nozzle throat. These cusps
are impossible to fit with the morphing system here �effectively
beams in bending�, and hence the error in the fit is worst at the
nozzle throat. This is deleterious to the nozzle performance since
the flow is highly sensitive to the conditions at the throat of the
nozzle. This artifact of the CFD and the morphing system can be
ameliorated by adding further constraints to the CFD calculations
to limit the curvature of the difference curves and to specify the
boundary conditions at the throat more precisely.

4 Construction of the Morphing Nozzle
The morphing structure is composed of a combination of stain-

less steel core members, a polycarbonate aerodynamic surface,
and an aluminum base plate to which the actuators are fixed. This
configuration is presented in Fig. 9. The core members are stain-
less steel rods, connected by pins at each end. The vertical tie rods
are connected to the actuators using a set of universal joints to
eliminate bending moments and are threaded in order to screw
into the universal joints, which also act as turnbuckles for fine
adjustment of the initial fit. Because the steel is several orders of

magnitude stiffer than the polymer surface, the rods are assumed
to be rigid in the analysis. The walls and flat roof of the tunnel,
not shown in the photograph, are of 12.7 mm thick polycarbonate
for optical access.

A range of aerodynamic surfaces was manufactured, either by
vacuum molding or by machining from block polycarbonate. The
maximum thickness of the polycarbonate surface is limited by
yielding of the material. The maximum imposed strain is deter-
mined from the maximum imposed curvature �max due to the re-
quired shape change �the second spatial derivative of the approxi-
mated shapes shown in Fig. 6�, such that tmax=2�Y�max

−1 , where �Y
is the yield strain of the morphing face material. Polycarbonate
was chosen as a surface material in part because its large yield
strain permits very conservative designs. For this structure, �Y
=0.02 and �max=1.5�10−3 mm−1, giving tmax=27 mm. A 10 mm
thick sheet was chosen for the morphing surface to reduce the
force necessary to morph the structure.

The actuators are custom-built Haydon Switch electric linear
stepper motors with a 3.2 �m step size and a maximum force per
motor of 880 N. Considerations of space limit the actuator ar-
rangement; it would be preferable to install the actuators horizon-
tally between adjoining nodes, as in the structure demonstrated by
�8�, but the small scale of this morphing structure prohibits this.
AllMotion stepper controller chips were used to control and drive
each actuator, and the chips were commanded through LabView
software. The controllers were unable to sense an actuator’s abso-
lute position, so a 2 in. linear potentiometer was attached to the
base of each actuator to measure actuator extension. These instru-
ments gave precise measurements for the extension of the actua-
tors and thus for the position of the surface at all times. The
maximum actuator displacement during the transition from Mach
2.5 to Mach 3.8 is approximately 12 mm.

The morphing nozzle was integrated into a supersonic in-draft
wind tunnel at the Princeton University Department of Mechani-
cal and Aerospace Engineering. The nozzle itself is 445 mm in
length with a fixed exit area of 2464 mm2. The throat area varies
from 877 mm2 at Mach 2.5 to 252 mm2 at Mach 3.8. The tunnel
draws quiescent air from the laboratory through the nozzle, which
gives constant and easily measurable stagnation conditions of
room temperature and atmospheric pressure. The diverging end of
the nozzle is attached to a diffuser connected to an air ejector
system, which maintains the low back pressure that pulls in air
from the room and creates supersonic flow through the test sec-
tion. At Mach 3, the test section pressure is 2.7 kPa and the ejector
back pressure is 20 kPa. A custom designed diffuser achieves the
necessary pressure recovery after the test section. The diffuser
slows the flow in a series of oblique shocks, decreasing the loss of
total pressure produced by a normal shock diffuser.

5 Preliminary Assessment of the Nozzle Performance
Initial nozzle tests were designed to morph the nozzle through a

full range of curve shapes and flow speeds, characterizing the
nozzle performance. A 12 deg wedge was mounted to the flat
surface of the nozzle test section to generate an oblique shock,
which could be visualized with Schlieren imaging. Images were
taken through two quartz windows in the sidewalls at the nozzle
test section using a mercury lamp light source and a Qimaging
Retiga 1300i Fast 1394 camera. Video and color stills were also
taken with a Casio ExFilm EX-Z750 digital camera. Most nozzle
runs began with the nozzle at the static Mach 2.5 contour before
moving to Mach 3.0 or Mach 3.8 and then returning to Mach 2.5.

Figure 10 shows a series of images from one tunnel run in
which the nozzle began at the Mach 2.5 contour and morphed to
the Mach 3 contour. Taken in succession, these images show a
clear change in shock angle, and thus Mach number, as the tunnel
changes contour. Video footage of the nozzle showed a smooth
and gradual shock angle change as the tunnel morphed, a visual-
ization of the continuously changing Mach number in the nozzle
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Fig. 8 The differences between the desired shapes and the
optimal shapes, in the least-squares sense, found by the shape
fitting algorithm

Fig. 9 A photograph of the morphing structure prior to its in-
stallation in the wind tunnel. The tunnel walls and flat non-
morphing surface have been removed.
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test section. During motion of the morphing surface, no shocks
were seen upstream of the wedge; this is evidence of an isentropic
expansion through the nozzle to the test section.

An oblique shock was continuously visible during morphing
from the Mach 2.5 contour all the way to the Mach 3.8 contour,
across the morphing nozzle’s entire flow speed range. The shock
at the Mach 3.8 curve shape, however, appeared noticeably
weaker in Schlieren images. Figure 11 is a series of four images
showing the change from the Mach 3.8 contour to the Mach 3
contour. The shock was weak at the Mach 3.8 shape, but the same
smooth, gradual shock angle change seen in the lower Mach num-
ber transitions was seen as the surface morphed to and from the
Mach 3.8 curve shape.

One test was run without the wedge in the test section. This was
meant to verify that the computed curves and the transitions be-
tween them were indeed isentropic, as they appeared to be when
the wedge was in the test section. The three static contours, when
properly formed, did not cause any shocks in the flow. They each
created clean isentropic expansions at the expected static pres-
sures. As the surface morphed, however, weak shocks were seen
to appear and move swiftly downstream, as in Fig. 12. The shocks
in these images appear to be coming from the flat wall, but they
were more likely reflected shocks or expansions from the curved
wall. As the aerodynamic surface morphed, it impinged into or

retracted from the flow stream, causing disturbances to propagate
downstream. These shocks were accompanied by jumps in static
pressure followed by a pressure drop down to the expected values
for each contour when the surface reached a static position.

Flow speed estimations were made with a static pressure read-
ing immediately before the wedge. Based on the results from the
nozzle test with no wedge, it is assumed, at least for static curve
shapes, that the flow experiences an isentropic expansion through
the nozzle. Flow speed can therefore be determined from the static
pressure in the test section. An average pressure value was com-
puted for each contour shape during each nozzle run, and then
those values were averaged to get one mean value of static pres-
sure for each of the three contours. For multiple runs over a period
of two weeks, the pressure data were very consistent, as judged by
very small standard deviations. To determine a characteristic flow
speed at each contour, the average static pressure values were
compared to the reservoir pressure using isentropic relations.
Pressure values and the corresponding flow Mach number are
shown in Table 1 for each of the three nozzle contours.

Clearly, there is a substantial disparity between the expected
flow speeds and the observed values. There are two primary
causes of this disparity: failure to correct fully for boundary layer
effects and limitations of the wind tunnel ejector system. Initial
curve design calculations corrected for the boundary layer thick-
ness on the curved surface but did not account for boundary layer
growth on the other nozzle walls. The presence of thick boundary
layers on these walls significantly reduces the effective exit area,
decreasing the Mach number for each contour and bringing the
expected Mach number closer to those seen experimentally. The
large error at the Mach 3.8 contour is most likely a result of the
limitations of the wind tunnel ejector system. It was found that the
ejector system was unable to draw the necessary mass flow to
achieve Mach 3.8 flow in the nozzle, so the flow speed values
observed must necessarily be lower than this upper limit, regard-
less of contour accuracy. This also explains the weakened appear-
ance of the oblique shock at the Mach 3.8 contour.

6 Concluding Comments
To the best of the authors’ knowledge, this is the first practical

demonstration of a variable Mach number, continuously isentropic
morphing supersonic wind tunnel. This nozzle is capable of con-
tinuously and smoothly changing output flow velocity through a
range of Mach numbers. While weak oblique shocks were seen

Fig. 10 Gradual shock angle change from Mach 2.5 to Mach
3.0 read from left to right and top to bottom with the initial
shock angle overlaid to show the change in shock angle as the
surface deforms. Flow is left to right.

Fig. 11 Oblique shock during the transition from the Mach 3.8
contour to the Mach 3 contour. The black tab in image shows
the leading edge of the wedge.

Fig. 12 Oblique shocks move rapidly downstream during the
transition between various curve shapes. Flow is left to right.
The black tab marks the curved morphing side of the nozzle.

Table 1 Expected Mach numbers, measured pressures, and
inferred Mach numbers for peration of the morphing wind tun-
nel nozzle

Design
Mach

number

Average of the
average pressures

�kPa�

Interpolated Mach
number from

isentropic tables

2.5 8.2	1.3 2.3
3.0 4.3	1.1 2.8
3.8 1.75	0.3 3.3
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during shape transformations without the wedge installed, it is
believed that these shocks can be eliminated by morphing the
tunnel in smaller steps, rather than the large jumps �for example,
between Mach 3 and Mach 3.8� used here. This would require the
calculation of a larger series of ideal shapes but does not necessi-
tate any new procedures. Ultimately, the nozzle is designed to
demonstrate the concept of a morphing aerodynamic surface for
applications in scramjet inlets. This research successfully vali-
dated the possibility of such a technology while addressing a num-
ber of engineering problems involved in such a design, including
aerodynamic design, curve approximation, and positioning and
control.

There remain a number of interesting theoretical issues sur-
rounding the choice of the “best” approximate shape for the
nozzle profile. In this work, the best shape has been identified
with a least-squares fit. However, this provides no linkage be-
tween the surface profile and the aerodynamic performance of the
system. For example, it is clear that the tunnel is more sensitive to
positional errors at the throat than errors near the diffuser; the
least-squares technique does not account for this. Alternate meth-
ods would be to use a weighted least-squares fit or to calculate the
shapes directly through CFD, using the attainable nozzle shapes as
further constraints. This latter approach would be possible for the
morphing nozzle, which has few degrees of freedom, can be easily
approximated as two-dimensional, and has a limited range of op-
erating conditions. A morphing ramjet nozzle, which may need to
respond quickly to changes in velocity, pressure, and attitude, and
is fully three-dimensional, would overtax any CFD approach. In-
stead, a system with conjoined analytical and adaptive compo-
nents might be preferable. We postulate a system wherein analyti-
cal �or highly simplified CFD� techniques are utilized to
determine the large scale shape changes in the morphing structure,
before an active feedback system, possibly based on a neural net,
fine-tunes the surface to an ideal operating profile.

The installation and operation of the morphing nozzle revealed
several other issues, which were only broadly considered in the
preliminary design. A relatively thin morphing surface was chosen
to reduce the loads induced on the actuators, balancing actuator
performance, and structural rigidity. However, the aerodynamic
loads caused noticeable deformations in the nozzle surface. Nev-
ertheless, the flow appeared to be minimally sensitive to the mag-
nitudes of deformation experienced. This may be a consequence

of the relatively thick subsonic boundary layer suppressing shock
formation. The morphing nozzle might therefore be less sensitive
to small errors in surface approximation than initially expected.
Ultimately the design of morphing systems is actuator dominated:
The performance is governed by the space available for actuation
and the actuation method that is selected. In the case described
here, the maximum size and number of the actuators were gov-
erned by the length of the nozzle and the by the need to provide
sufficient overall control of the morphing surface. This limited the
power and speed of the actuators. It is believed that, as the system
is scaled up, the actuator authority will increase more quickly than
the aerodynamic loads, reducing the complexity of some of the
design trades needed at the laboratory scale.
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Time-Derivative Preconditioning
Methods for Multicomponent
Flows—Part II: Two-Dimensional
Applications
A time-derivative preconditioned system of equations suitable for the numerical simula-
tion of multicomponent/multiphase inviscid flows at all speeds was described in Part I of
this paper. The system was shown to be hyperbolic in time and remain well conditioned
in the incompressible limit, allowing time marching numerical methods to remain an
efficient solution strategy. Application of conservative numerical methods to multicom-
ponent flows containing sharp fluid interfaces was shown to generate nonphysical pres-
sure and velocity oscillations across the contact surface, which separates the fluid com-
ponents. It was demonstrated using the one-dimensional Riemann problem that these
oscillations may lead to stability problems when the interface separates fluids with large
density ratios, such as water and air. The effect of which leads to the requirement of small
physical time steps and slow subiteration convergence for the implicit time marching
numerical method. Alternatively, the nonconservative and hybrid formulations developed
by the present authors were shown to eliminate this nonphysical behavior. While the
nonconservative method did not converge to the correct weak solution for flow containing
shocks, the hybrid method was able to capture the physically correct entropy solution and
converge to the exact solution of the Riemann problem as the grid is refined. In Part II of
this paper, the conservative, nonconservative, and hybrid formulations described in Part
I are implemented within a two-dimensional structured body-fitted overset grid solver,
and a study of two unsteady flow applications is reported. In the first application, a
multiphase cavitating flow around a NACA0015 hydrofoil contained in a channel is
solved, and sensitivity to the cavitation number and the spatial order of accuracy of the
discretization are discussed. Next, the interaction of a shock moving in air with a cylin-
drical bubble of another fluid is analyzed. In the first case, the cylindrical bubble is filled
with helium gas, and both the conservative and hybrid approaches perform similarly. In
the second case, the bubble is filled with water and the conservative method fails to
maintain numerical stability. The performance of the hybrid method is shown to be
unchanged when the gas is replaced with a liquid, demonstrating the robustness and
accuracy of the hybrid approach. �DOI: 10.1115/1.3086592�

Keywords: hybrid conservative/nonconservative method, split coefficient matrix (SCM)
method, time-derivative preconditioning, dual time stepping

1 Introduction
As described in Part I, many propulsion related flow applica-

tions require modeling of multicomponent and or multiphase
flows over a wide range of Mach numbers. One example is the
low speed flow of liquid propellants through the low pressure fuel
turbopump �LPFTP� in the space shuttle main engine �SSME�, see
Ref. �1�. In this case, cavitation of the liquid propellant is likely to
occur in the turbopump, which may cause blade damage and a
reduction in the thrust produced by the SSME. Another example is
the overpressure suppression system activated during the launch
of a space vehicle. In this case, liquid water is injected into the
exhaust plume and troughs of water baths are placed in the flame
trench to reduce the ignition overpressure waves generated from
the interaction of the exhaust plume and the flame trench at take-
off, see Ref. �2�. A time-derivative preconditioned numerical
method appropriate for the simulation of compressible multicom-
ponent and multiphase flows obeying arbitrary equations of state

was described in Part I of this paper. The numerical method in-
cludes three formulations for the discretization of the convective
flux derivatives: a conservative preconditioned Roe �PROE�
method, a nonconservative preconditioned split coefficient matrix
�PSCM� method, and a hybrid �HYBR� method, which combines
the conservative and nonconservative methods. In order assess the
accuracy and the robustness of the three formulations on multidi-
mensional problems, each of the methods is applied to two sepa-
rate flow applications. Performance and accuracy comparisons of
each of the methods are discussed.

The present paper is organized as follows: First, steady and
unsteady flows of liquid water through a channel containing a
NACA0015 hydrofoil are computed. The inflow Mach number is
set to induce cavitation at the hydrofoil upper surface near the
leading edge. The solution is compared with the experimental re-
sults and a time accurate sequence of the cavitation phenomenon
is presented. In the second application, the PROE and HYBR
methods are used to predict the interaction of a shock wave trav-
eling through air and hitting a cylindrical bubble of helium �or
water�. In the case of the helium bubble, both methods perform
well and the HYBR method is shown to compute the correct
shock speed and location. Alternatively, in the case of a water
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bubble, the PROE method fails to converge within the subiteration
procedure for the fixed physical time step, while the HYBR
method remains robust and efficient independent of the density
ratio at the fluid interface.

2 Computed Results
The time-derivative preconditioned system of equations de-

scribed in Part I of this paper is used to solve a series of two-
dimensional steady and unsteady inviscid multicomponent flow
problems. Three convective flux derivative discretizations are
compared for the first application. These methods include the con-
servative PROE method, the nonconservative PSCM method, and
the HYBR method, which combines the PROE and PSCM meth-
ods. In each of the test cases, either first-order upwind or third-
order upwind biased differencing with total variation diminishing
�TVD� minmod limiters are used in space, and first-order back-
ward differencing in time �to ensure TVD boundedness�. Note that
the PROE method does not maintain bounded mass fractions �0
�Yi�1� even when first-order time and space discretizations are
used �the proof of this is given in Ref. �3��.

To begin, the three methods are used to predict the cavitating
liquid flow around a NACA0015 hydrofoil contained in a channel;
this test case demonstrates the multiphase modeling capability of
the methods. Then, to demonstrate the shock capturing capabili-
ties of the preconditioned HYBR method, two shock bubble inter-
action test cases are solved. In the first case, the PROE and HYBR
methods are used to predict the interaction of a MS=1.22 shock
wave traveling through air and hitting a cylindrical bubble of he-
lium. Both methods perform well for this case, and the solutions
predicted by the PROE and HYBR methods are indistinguishable.
In the second case, the bubble of helium is replaced with a bubble
of water and the PROE method becomes unstable as the shock
wave hits the interface �for the moderately large time step used�;
this leads to subiteration divergence and failure of the method.
Alternatively, the HYBR method remains efficient and stable by
locally switching to the nonconservative form at the interface
while predicting the correct shock-wave dynamics away from the
sharp interface, demonstrating the superiority of the hybrid formu-
lation for multicomponent flows at all speeds.

2.1 Cavitating NACA0015 Hydrofoil. The NACA0015 hy-
drofoil test case, studied in Ref. �4�, is revisited here with modi-
fied inflow conditions inducing cavitation to occur and necessitat-
ing the inclusion of multiphase effects in the physical and
numerical models. This case corresponds with case 2 of the Sal-
vetti and Beux benchmark problem �5�. Here the multicomponent
mixture model is used to predict cavitating flow through a channel
containing a NACA0015 hydrofoil. In addition, the different con-

vective term discretization strategies are analyzed and compared
with each other in terms of accuracy and efficiency. The computed
results are compared with the experimental results reported by
Rapposelli et al. �6�. It is demonstrated that all three methods
predict similar pressure distributions over the hydrofoil, but the
nonconservative PSCM method is the most efficient for unsteady
flows in terms of convergence rate and overall runtime. This case
has also been solved by Li and Merkle �7� and Li et al. �8� using
an equivalent mixture formulation and a numerical method similar
to the present PROE method. There computation included viscous
effects, which are neglected in this study. In their computations,
the physical vapor pressure �Pvap=3165 Pa� was increased to
5372 Pa to simulate the effects of turbulence on cavitation. In the
present study, computations using both the physical vapor pres-
sure and the vapor pressure used by Li and Merkle �7� and Li et
al. �8� are reported.

The profile of the NACA0015 hydrofoil is defined by the ana-
lytic function

yupper�x̄� = y�x̄�
ylower�x̄� = − y�x̄�

for x̄ = x/c � �0,1�

where

y�x̄� = 0.75�0.2969�x̄ − 0.12x̄ − 0.3537x̄2 + 0.2843x̄3 − 0.1015x̄4�
�1�

The chord of the hydrofoil is c=0.115 m and is contained in a
channel 13 chord lengths long and 1.28 chord lengths high at an
angle of attack of 4 deg. An outline of the geometry is displayed
in Fig. 1. Discretization of the solution domain is carried out using
a structured overset grid consisting of five zones and a total of
22,205 grid points. Figure 2 displays the overset region of the grid
near the hydrofoil. The liquid water is assumed to obey a stiffened
gas equation of state of the form

� =
p + p�

RT
and h = CpT �2�

where the gas constant has its usual definition R=Cp��−1� /�.
The material properties are taken as

� = 1.9276, Cp = 8076.73 J/kg/K, p� = 1.137279 � 109 Pa

These material constants are consistent with those reported in Ref.
�9� to model water at standard atmospheric conditions. The
boundary conditions include slip walls on the upper and lower
surfaces of the channel, as well as the surface of the hydrofoil. At
the inflow boundary, the velocities, temperature, and mass fraction
are specified and the characteristic relation is used to update the

Fig. 1 Geometry for NACA0015 inside a channel

031013-2 / Vol. 76, MAY 2009 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.44. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



pressure. At the outflow boundary, a nonreflecting characteristic
boundary condition is used. Points lying on the overset boundaries
are updated using bilinear interpolation of the primitive variables
Q= �p ,u ,v ,T ,Y�. The inlet conditions provided by the experimen-
tal study are

Pin = 0.12 bar, Uin = 3.41 m/s, Tin = 298 K

To model the generation/condensation of vapor, a source term is
added to the right-hand side of the governing equations of the
form �0,0 ,0 ,0 ,−ṁ+− ṁ−�T, where the mass fraction of the vapor
phase is being solved for. Following Li et al. �8�, the finite rate
relations, as developed in Ref. �10�, are used:

ṁ+ = Cprod�min�p − Pvap,0�
1
2�refUref

2 tref
���1 − Yv� �3�

ṁ− = Cdest�max�p − Pvap,0�
1
2�refUref

2 tref
��Yv �4�

The empirical constants Cprod and Cdest are set equal to the values
used by Li et al. �8�,

Cprod = 105 and Cdest = 1

To begin, the physical vapor pressure value of Pvap=3165 Pa is
used in the source term evaluation, along with third-order convec-
tive flux derivatives with TVD limiters, and all the three methods
are ran in steady-state mode. Cavitation occurs on the upper sur-
face of the hydrofoil where a thin sheet of vapor/liquid mixture
forms. The Cp curve on the upper and lower surfaces of the hy-
drofoil are displayed in Fig. 3, along with the experimental data.
The dashed line in the figure represents the value of

Fig. 2 Structured overset grid for NACA0015 inside channel

Fig. 3 Plot of the Cp curve on the upper and lower surfaces of the hydrofoil
for Pvap=3165 Pa using third-order convective fluxes with TVD limiters for
each of the methods
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Pvap − Pin
1
2��U�

2 �5�

This is the pressure value at which the source term is activated
and vapor is being generated. All three numerical methods con-
verge to a similar solution, but none of them compares particularly
well with the experimental data. All three methods reduce the
maximum residual eight orders of magnitude in approximately the
same number of iterations, as displayed in Fig. 4 along with the
maximum and minimum volume fractions as a function of the
iteration. Only small values of volume fraction were generated
using the physical value of the vapor pressure. Since no sharp

mass fractions are present in the solution, the results using the
PROE and HYBR methods are identical.

In discussing these results with Venkateswaran, the second au-
thor of Ref. �8�, he suggested to use the larger value of vapor
pressure that they used, since they also experienced difficulties in
matching their solution to the experimental data when using the
physical value of the vapor pressure. The vapor pressure was then
raised to Pvap=5372 Ps and the three methods were re-applied. To
start, first-order convective fluxes were used and a steady solution
was achieved. The Cp curve on the upper and lower surfaces of
the hydrofoil is displayed in Fig. 5. There is much better agree-
ment with the experimental data near the leading edge, but the

Fig. 4 Convergence history of the maximum residual „top… and the computed maximum/minimum volume fraction for
Pvap=3165 Pa using third-order convective fluxes with TVD limiters „bottom…

Fig. 5 Plot of the Cp curve on the upper and lower surfaces of the hydrofoil
for Pvap=5372 Pa using first-order convective fluxes for each of the
methods
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numerical diffusion appears to smooth the re-entrant jet such that
the computed surface does not match the data near the trailing
edge. Figure 6 plots the convergence history and maximum/
minimum computed vapor volume fraction. Again the conver-
gence history of all three methods are approximately the same, but
a much larger vapor volume fraction is predicted than in the pre-
vious case. Additionally, no sharp interfaces are present in this
calculation so the PROE and HYBR results are identical.

To reduce the numerical diffusion, third-order convective fluxes
with TVD limiters were applied to the problem using the modified
vapor pressure, Pvap=5372 Pa. During the time marching pro-
cess, the steady-state residual began to oscillate and the
pseudotime solution was analyzed to see whether the oscillations

were caused by limiter rattling or some physical phenomenon. It
was found that a vapor sheet generated on the upper surface of the
hydrofoil was shedding. This implies that the flow is physically
unsteady and the dual time stepping must be applied. This was not
surprising since cavitation is an inherently unsteady phenomenon.
Dual-time unsteady analysis was then performed at a physical
time step of �t=1.0�10−05 s, based on examining the shedding
frequency observed in the pseudotime solution. Each method was
ran with a pseudotime CFL=1.0�10+04, U�=3.4 m /s, and a
convergence criterion of three orders of magnitude residual reduc-
tion or 50 subiterations �whichever is achieved first�. The Cp
curve is highly unsteady due to the shedding vapor sheet, Fig. 7

Fig. 7 Plot of the Cp curve on the upper and lower surfaces of the hydrofoil
for Pvap=5372 Pa using third-order convective fluxes with TVD limiters for
each of the methods

Fig. 6 Convergence history of the maximum residual „top… and the computed maximum/minimum volume fraction for
Pvap=5372 Pa using first-order convective fluxes „bottom…
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plots the Cp curve during a physical time when the vapor sheet is
attached to the hydrofoil. The result matches the experiment more
closely than the first-order result, but a time-averaging procedure
of the Cp is necessary to assess the true accuracy of the solutions.

The convergence history for the three methods is displayed in
Fig. 8. The PROE method appears to struggle during the subitera-
tion procedure and performs the maximum 50 subiterations for
almost every physical time step. Alternatively, the PSCM and
HYBR methods are efficiently reducing the maximum residual
and only perform the user specified minimum of 5 subiterations
for most physical time steps. The unsteady flow is nearly incom-
pressible and the results of the PSCM and HYBR methods are
very similar. Since the PSCM method is the most efficient of the
three methods, the computation was continued and Fig. 9 plots the
maximum pressure as a function of time. From the figure, we
observe the periodic nature of the flows. There appears to be a
large pressure peak followed by a much smaller peak. Examining

the unsteady vapor volume fraction, the large peak is associated
with a large sheet of vapor shedding from the hydrofoil, and the
smaller peak corresponds to a smaller sheet following the larger
one. To demonstrate the vapor shedding phenomenon, time se-
quences of contours of the vapor volume fraction are shown in
Figs. 10–13. The contour levels are set from 0.1 �blue� to 0.9
�red�. The time sequence starts with the initial forming of the
vapor sheet on the upper surface of the hydrofoil. Next a large
vapor cloud forms and a re-entrant jet pulls the vapor cloud from
the foil and propagates it upstream. Next a small sheet of vapor
rolls up and sheds of the trailing edge of the foil. The process is
then repeated for another cycle, confirming the time periodic be-
havior of the flow.

2.2 Shock Bubble Interaction. This next application in-
volves a multicomponent flow with sharp interfaces, compressibil-
ity effects, and shock waves. The simulation of a MS=1.22 shock
traveling through air and interacting with a cylindrical bubble of
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Fig. 8 Number of subiterations required to reduce the residual
three orders of magnitude as a function of the physical time
step

0 0.2 0.4 0.6 0.8 1 1.2 1.4
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
x 10

4

Time (seconds)

M
ax

im
um

P
re

ss
ur

e
(P

a)

Fig. 9 Maximum pressure as a function of time computed with
the PSCM method

Fig. 10 Volume fraction at t=0.02 to 0.24 s at intervals of
0.02 s

Fig. 11 Volume fraction at t=0.26 to 0.48 s at intervals of
0.02 s

Fig. 12 Volume fraction at t=0.50 to 0.72 s at intervals of
0.02 s

Fig. 13 Volume fraction at t=0.74 to 1.02 s at intervals of
0.02 s
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another fluid is performed. This case represents a preliminary step
toward the modeling of fuel droplet vaporization and combustion
in liquid propellant rocket engines. Here only a single droplet is
considered and all chemistry and viscous forces are neglected.
Since the test case requires the prediction of shock-wave dynam-
ics, only the PROE and HYBR methods are applied. A schematic
of the test case is displayed in Fig. 14. Initially a cylindrical
bubble filled with helium gas is considered. The helium is as-
sumed to obey an ideal gas equation of state where �He=1.67 and
Cp,He=519.37 J /kg K. In the second case, the helium is replaced
by water, which is assumed to obey the stiffened gas equation of
state. The initial state of the preshock air is given by

Ppre = 100,000 Pa, Tpre = 300 K, upre = 0 m/s

and the mass fraction is set to zero inside the bubble and unity
everywhere else. At these conditions, the slightly heavier helium
gas creates a density ratio of 1.38 with the surrounding air, while
the liquid water creates a much larger density ratio of 840. This is
much closer to the density ratios present in LOX fueled rocket

Fig. 14 Configuration for shock/bubble interaction problem

Fig. 15 Subiteration convergence history of the PROE and
HYBR methods for the MS=1.22 shock air/helium interaction
problem

Fig. 16 Numerical Schlieren for air/helium shock bubble interaction at time
step 100: „Upper… PROE and „Lower… HYBR
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engines. The postshock state is derived using the one-dimensional
shock relations, described in Ref. �11�, and is given by

Ppost = 156,980 Pa, Tpost = 342.16 K, upost = 115.85 m/s
A uniform grid with dimensions 401�151 was generated for the
present test case. This represents a grid resolution on the order of
1.0 mm, which is coarse compared with the resolution used by
Quirk and Karni �12�, where an adaptive grid method was used
and an average mesh resolution of approximately 0.056 mm was

considered. The purpose of this test is to compare the results pre-
dicted using the PROE and HYBR methods, not the accuracy of
the solution compared with experimental data. The boundary con-
ditions on the upper and lower walls of the channel are prescribed
as slip walls, and extrapolation is used at the inflow and outflow
boundaries. A physical time step �t=1 �s, based on the shock
speed, is used along with a pseudotime CFL=10000. A conver-
gence criterion of three orders of magnitude reduction in the
maximum residual or a maximum of 50 subiterations was used for

Fig. 17 Numerical Schlieren for air/helium shock bubble interaction at time
step 150: „Upper… PROE and „Lower… HYBR

Fig. 18 Numerical Schlieren for air/helium shock bubble interaction at time
step 200: „Upper… PROE and „Lower… HYBR
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the calculations, which were performed for 300 physical time
steps.

To begin, we discuss the results of the shock interacting with
the helium bubble. In this case, both methods perform equiva-
lently well in terms of convergence rate, as displayed in Fig. 15,
which plots the number of subiterations required to meet the con-
vergence criteria as a function of the physical time step. Addition-
ally, both methods predict similar solution behavior, as displayed
in Figs. 16–19, where numerical Schlieren images at particular
time steps are plotted for each of the two methods. Here the nu-
merical Schlieren is defined as log�����+1�. Figure 16 displays
the solution at the 100th time step corresponding to the time when
the shock has impacted the bubble. In this figure, we see that most
of the shock successfully transmitted through the bubble interface
and only a small reflected shock appears in front of the bubble.
Both solutions are practically identical and the HYBR method
computes the correct shock location and strength. Figure 17 dis-
plays the solution at the 150th time step, at this time the shock is
over halfway through the bubble and the reflected shock has trav-
eled upstream. Figure 18 displays the solution at the 200th time
step; now the shock is transmitting through the other side of the
bubble, and another reflected shock appears inside the helium
bubble. Finally, Fig. 19 displays the solution at the 250th time
step, where the initial shock wave has transmitted through the
bubble, and the reflected shocks are continuing to travel upstream
of the bubble. In these results, we have demonstrated the capabil-
ity of both methods to model multicomponent flows with shocks,
and the shock capturing capabilities of the HYBR method have
been confirmed in multidimensions.

The gas/gas shock bubble interaction case does not require low
speed preconditioning and although the problem is multicompo-
nent, the density ratios appearing in the solution are not large.
Now the bubble is assumed to be filled with water, and since the
sound speed of water is much larger than air, the shock in air
becomes weak in water. Moreover, the density ratio is much larger
and no smoothing of the initial interface is considered �as is often
done when Eulerian methods are applied to the problem�. This is
a true test of the robustness of the methods. The solution contains
shocks, multiple fluids, large density ratios, different equations of

state, high speed in air, and low speed in water. In fact, with the
present time step of 1 �s the PROE method diverged after 36
time steps. When the time step was reduced to one-tenth of a
microsecond the solution diverged after 431 iterations, which is
only 7.1 �s more of simulated physical time. Alternatively, the
HYBR method experiences no problems in convergence and sat-
isfies the convergence criteria throughout the computation, as
shown in Fig. 20.

Examining the solution computed using the HYBR method,
both pressure contours and numerical Schlieren images are dis-
played in Figs. 21–24. The max and min pressure contours are set
to 100,000 Pa �blue� and 300,000 Pa �red�. In Fig. 21, the shock

Fig. 19 Numerical Schlieren for air/helium shock bubble interaction at time
step 250: „Upper… PROE and „Lower… HYBR

Fig. 20 Subiteration convergence history of the PROE and
HYBR methods for the MS=1.22 shock air/water interaction
problem
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Fig. 21 „Upper… pressure and „Lower… numerical Schlieren for air/water shock bubble
interaction at time step 100 using the HYBR method

Fig. 22 „Upper… pressure and „Lower… numerical Schlieren for air/water shock bubble
interaction at time step 150 using the HYBR method
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Fig. 23 „Upper… pressure and „Lower… numerical Schlieren for air/water shock bubble
interaction at time step 200 using the HYBR method

Fig. 24 „Upper… pressure and „Lower… numerical Schlieren for air/water shock bubble
interaction at time step 250 using the HYBR method
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has hit the bubble, but unlike the air/helium result, the shock can
only weakly transmit into the water. Instead, a much larger re-
flected shock is observed near the front of the bubble. It is only
the pressure contours that allow us to see the shock moving
through the bubble. Figure 22 shows the shock wave after it has
moved just over half the diameter of the bubble. The reflected
shock is moving upstream and oscillations in pressure appear at
the fluid interface. These oscillations are caused by the baroclinic
generation of vorticity due to the misalignment of the pressure
gradient and the density gradient. When the shock moves over the
interface at different speeds inside and outside the bubble, the
interface is perturbed leading the misalignment. If the numerical
method produces nonphysical oscillations at the interface, as the
PROE method has been shown to do, then there is no way to
distinguish between the physical and nonphysical instabilities in
the flow field. Figure 23 shows the initial shock as it leaves the
bubble. The large change in fluid properties across the interface
causes the shock wave in air to bend around the bubble as if it
were a solid object. In Fig. 24, the shock has passed the bubble
and the reflected shock has now reflected off the channel walls. In
comparing the solutions of the air/water shock interaction with
those of the air/helium results, it has been observed that a larger
reflected shock is produced at the bubble interface, the strength of
the transmitted shock is greatly reduced, and the outer shock
bends around the fluid interface similar to the behavior observed
when a shock passes over a solid cylinder. It has been demon-
strated that the HYBR method is capable of predicting shock-
wave dynamics correctly, deal with large density ratio fluid inter-
faces, and low speed flows.

3 Summary
A time-derivative preconditioned system of equations is applied

to two multidimensional multicomponent and or multiphase flow
applications. Three methods of spatial discretization are evalu-
ated: a conservative preconditioned Roe method, a nonconserva-
tive preconditioned SCM method, and a hybrid method, which
combines the conservative and nonconservative methods. It has
been demonstrated that the conservative scheme lacks robustness

when applied to multicomponent flows. The PSCM method re-
mains robust when applied to multicomponent flows and is accu-
rate for low speed flows, but converges to nonphysical solutions
when shocks are present. The hybrid method, which combines the
PROE and PSCM methods, retains the positive features of each of
the methods resulting in a robust and efficient method for multi-
component flows at all speeds.
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Feasibility of Metallic Structural
Heat Pipes as Sharp Leading
Edges for Hypersonic Vehicles
Hypersonic flight with hydrocarbon-fueled airbreathing propulsion requires sharp lead-
ing edges. This generates high temperatures at the leading edge surface, which cannot be
sustained by most materials. By integrating a planar heat pipe into the structure of the
leading edge, the heat can be conducted to large flat surfaces from which it can be
radiated out to the environment, significantly reducing the temperatures at the leading
edge and making metals feasible materials. This paper describes a method by which the
leading edge thermal boundary conditions can be ascertained from standard hypersonic
correlations, and then uses these boundary conditions along with a set of analytical
approximations to predict the behavior of a planar leading edge heat pipe. The analytical
predictions of the thermostructural performance are verified by finite element calcula-
tions. Given the results of the analysis, possible heat pipe fluid systems are assessed, and
their applicability to the relevant conditions determined. The results indicate that the
niobium alloy Cb-752, with lithium as the working fluid, is a feasible combination for
Mach 6–8 flight with a 3 mm leading edge radius. �DOI: 10.1115/1.3086440�

1 Background

For aerodynamic reasons hypersonic vehicles require sharp
leading edges, with millimeter scale radius. When the edges are
that sharp, the heat flux into the structure is intense. Specifically,
at Mach 6–8 �the highest Mach number attainable with hydrocar-
bon fuels�, the fluid stagnation temperature Tst�1400°C, exceed-
ing the realistic upper use temperature of most materials. Because
the tip must remain sharp and have a stable shape, ablative solu-
tions are very challenging. Instead, the heat must be rapidly redis-
tributed through the solid to enable dissipation by radiation from
the largest possible area of the vehicle surface. The three primary
passive options to obtain such a solution are �i� carbon-fiber-based
composites that retain load-bearing capability at T→Tst, �ii� ultra-
high temperature ceramics �such as HfB2� that combine refracto-
riness TM �Tst with large thermal conductivity at T→Tst, and �iii�
heat pipes, which enable allowable equilibrium temperatures by
providing exceptional effective thermal conductivity, keff.

This assessment addresses the performance of heat pipes incor-
porated within metallic leading edge structures during steady-state
hypersonic cruise. The preferred configuration has a curved sur-
face fully defined by the thickness t, the leading edge radius Rle,
and the angle �0 �which is the complement of the wedge half-
angle �� at which the curved front connects to the flat radiating
surface �see Fig. 1�. The design length of the radiating surface, L,
must be chosen to ensure that the materials remain below their
maximum use temperature.

Heat pipes have been pursued previously in the context of lead-
ing edges and other high temperature applications �1,2�. The
present structural heat pipe differs in the sense that the design not
only equilibrates the temperature but also supports transverse and
shear loads �Fig. 2�. For manufacturing facility and robustness,
all-metallic designs are pursued, and their feasibility up to Mach 8
deduced.

Because of the crucial role of radiation, the temperatures in-
duced are a strong function of the emissivity, �, of the radiating
surface. While � can be quite low for conventional alloys, the
refractory alloys to be explored here can be designed to have
larger values by pre-oxidizing to form either alumina or silica.
The most well-documented are the nickel alloys used in turbines,
which, when used with a bond coat, form a highly adherent, thin
layer of �-Al2O3 �3� with �at high temperature� ��0.9.
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To address this challenge, this paper is structured as follows:
The aerothermodynamic environment that governs the heat flux
into the leading edge is characterized using procedures based on
the stagnation temperature and heat transfer coefficient. Steady-
state temperatures and heat fluxes induced when the heat pipe is
functioning are derived using analytic approximations with the
fidelity assessed using selected finite element calculations. The
designs to be explored are based on nickel �Inconel 625� and
niobium �Cb-752� alloys having the properties in Table 1 and
temperature-dependent yield strength characteristics presented in
Fig. 3. Other refractory alloys, such as those based on molybde-
num, tungsten, or rhenium, could be envisaged using the same
basic protocol. The differing temperature and stress circumstances
that arise during transients before the heat pipe begins to function
are examined, as well as the influence of thin oxidation-protective
coatings on the metallic surface. The operational requirements on
the heat pipe are checked against models of heat pipe behavior to
ensure the functionality of the system at the requisite heat flux and
physical dimensions.

2 The Leading Edge Aerothermodynamic Environ-
ment

Stagnation conditions. For hypersonic vehicles powered by
scramjet engines with hydrocarbon fuels, the Mach number at
cruise ranges between 6 and 8. The relation between Mach num-
ber and altitude is determined by requiring that the vehicle flies at
a constant dynamic pressure �typically 48 kPa �4��. For each alti-
tude, the freestream temperature T�, pressure P�, and density ��

are found in standard atmosphere tables �5�, summarized in Table
2.

The total freestream enthalpy H� is related to the temperature
and vehicle velocity, u�, by

H� = cpT� + u�
2 /2 �1�

where cp=1.04 kJ /kg K is the specific heat of quiescent air. The
pressure at the stagnation point is obtained by assuming that the
kinetic energy of the fluid is converted completely to pressure, and
that Pst	 P� �6�,

Pst � ��u�
2 �2�

The stagnation temperature can be found using a Mollier diagram
�7�, which is implemented in the Hypersonic Airbreathing Propul-
sion �HAP� software �4�. The results are summarized in Table 2.

Heat flux. Herein is a strategy for determining the aerothermal
loading. The premise is that the air close to the surface at the
leading edge reaches the full gas stagnation temperature. Heat
enters the leading edge at a rate governed by a spatially varying
heat transfer coefficient. A heat pipe on the back surface of the
leading edge transfers the heat to a flat region, from which the
heat is then radiated into low temperature space �Fig. 1�. The
system is heat balanced, such that the total heat entering the ve-
hicle through convection is equal to that leaving by radiation. The
following describes how to calculate the heat transfer coefficient
and heat flux.

Tst

heat pipe

hot fluid

keff

Rle

Design length, L

qrad

qrad

hst

h(s)

vehicle
surface

T

T

t

q
.
=0

0
5

Fig. 1 The local geometry and flow conditions near the lead-
ing edge

Metallic
cruciform

(a)

(b)

Wick
material

Metallic
face sheet

Fig. 2 A structural heat pipe for the leading edge of a hyper-
sonic vehicle showing „a… a cutaway view with the metallic wick
material removed to show the cruciform structural members,
and „b… the assembly with both metallic faces and the wick
installed

Table 1 Relevant material properties of nickel-based superalloy Inconel 625 and niobium alloy
Cb-752. The temperature-dependent material properties are taken at 800°C.

Density �
�kg /m3�

Specific heat cp
�J /kg K�

Thermal
conductivity k

�W /m K� �at 800°C�

Thermal
expansion �

�ppm/K� �at 800°C�

Young’s
modulus E

�GPa� �at 800°C�

Inconel 625 8440 525 21 15 155
Cb-752 9030 281 48 7.4 110
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Fig. 3 The temperature dependence of the yield strength for
the two refractory alloys, Inconel 625 „red… and Cb-752 „blue…,
used in the analysis, shown as solid lines. Analytical cross-
plots of maximum stress as a function of temperature are pre-
sented as dashed lines for Mach 6–8. The corresponding finite
element results are plotted as circles.
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Fay and Riddell �8� used the results of Lees �9� to ascertain
correlations for the heat flux at the stagnation point. Sutton and
Graves �10� approximated these by

q̇ = �Hg − Hw�K�Pst

Rle
�3�

where Hg is the local fluid enthalpy, Hw is the local wall enthalpy,
and K is a heat transfer factor, which is a function of molecular
weight, the mass fractions of the constituent gases, and a gas-
dependent transport parameter. Sutton and Graves �10� used the
results of Svehla �11� to calculate K=3.6
10−4 m−1 kg−1/2 for
air. For the Mach numbers under investigation, Hg	Hw; conse-
quently, by setting Hw=0 and Hg�H�, Eq. �3� becomes the
“cold-wall” heat flux. At the stagnation point,

q̇cw,st = H�K�Pst

Rle
�4�

The heat transfer coefficient at this location hst can be approxi-
mated through

hst = q̇cw,st/Tst �5�

which varies around the curved leading edge as h���=hst cos���.
Beyond the curved section, the heat transfer coefficient declines as
h�s��s−1/2, calculated as shown in Fig. 4. The actual vehicle sur-
face is given by the solid line. Equating the heat transfer at the
transition from the curved to flat sections, the coefficient along the
radiating surface becomes

h�s� = hst cos �0

�Rle

�s tan �
�6�

These equations permit calculation of the fluid temperature and
local heat transfer coefficient around the leading edge. Implicit in
this approach is the assumption that h is unaffected by the surface
temperature Tsurf and, accordingly, can be used to determine the
actual heat flux once Tsurf has been ascertained. The dependence
of the stagnation point heat transfer coefficient on the leading
edge radius for the Mach numbers of interest is displayed in Fig.
5; it is independent of the material properties of the leading edge.

3 Steady-State Temperatures and Thermal Stresses

3.1 Analytical Estimates. Isothermal temperature. When the
heat pipe is functioning and the wall is thin, the solid approaches
an isothermal temperature, Tiso, except very close to the leading
edge. Thus, Tiso becomes a useful reference temperature as well as
the nominal temperature of the working fluid in the heat pipe.
Under this thermal condition, the system is heat balanced. The
spatial extent of the solid that attains Tiso will be addressed later.
The heat entering through the curved surface is given by

Qin
c =�

0

�0

Rlehst cos ��Tst − Tiso�d� 	 Rlehst sin �0�Tst − Tiso�

�7�
Through the flat surface the convective heat transfer is given by

Qin
f =�

s0

s0+L

h�s��Tst − Tiso�ds 	
2h�

�Rle

tan �
��Rle + L tan � − �Rle�


�Tst − Tiso� �8�

with h�=hst cos��0� and s the distance along the radiating surface
as sketched in Fig. 4. The heat radiated out through the entire
leading edge surface is

Qout =�
0

Ltot

��Tiso
4 ds 	 ��LtotTiso

4 �9�

where Ltot is the total length of the heat pipe �Ltot=Rle�0+L� and
�=5.67
10−8 W /m2 K4 is the Stefan–Boltzmann constant. Heat
balance requires that Qin=Qout, and hence

Rlehst sin �0�Tst − Tiso� +
2h�

�Rle

tan �
��Rle + L tan � − �Rle��Tst − Tiso�

− ��LtotTiso
4 = 0 �10�

which can be solved for Tiso. The results are plotted in Fig. 6�a�,
as a function of the length of the radiating surface, for Rle

Table 2 Atmospheric properties and calculated stagnation conditions for flight over the range
of Mach 6 to 8 with constant dynamic pressure of 48 kPa

Mach No.
Altitude

�km�
Temperature T�

�K�
Pressure P�

�Pa�
Density ��

�kg /m3�
Velocity u�

�km/s�
Enthalpy H�

�MJ/kg�

Stagnation
temperature Tst

�K�

6 26.93 223.5 1900 0.0296 1.80 1.85 1651
7 28.98 225.5 1396 0.0215 2.11 2.46 2122
8 30.76 227.3 1069 0.0160 2.42 3.16 2627

s

Rle

s0

0

Fig. 4 The assumed geometry for the calculation of the heat
transfer coefficient along the flat radiating surface. The actual
geometry is depicted with solid lines, while the dashed lines
indicate the geometry for a perfectly sharp leading edge.
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Fig. 5 The stagnation point heat transfer coefficient as a func-
tion of the leading edge radius for a range of Mach numbers
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=3 mm, �=0.9, and �=6 deg. Note that the isothermal tempera-
ture is sensitive to the design length L but independent of the
material chosen for the system.

Maximum temperature. The maximum temperature at the stag-
nation point can be estimated by assessing the heat flux across a
small element, length Rled� �Fig. 7� by using a one-dimensional
calculation for heat flow into a hollow cylinder. Implicit to this
estimation is that the heat flux through the wall is much larger
than that along the surface �justified below�. The general equation
for steady-state heat conduction is

k
 �2T

�r2 +
1

r

�T

�r
� = 0 �11�

with k the thermal conductivity of the material and r the radial
distance from the center. The boundary conditions are set by the
stagnation temperature and heat transfer coefficient of the gas, as
well as by the premise that the internal surface is at temperature

Tiso. The solution for the maximum material temperature at the
outside surface is

Tmax =

Tiso + Tst
Rlehst

k
ln

Rle

Ri
�

1 + 
Rlehst

k
ln

Rle

Ri
� �12�

where Ri=Rle− t is the inner radius of the leading edge. The maxi-
mum temperatures Tmax for Rle=3 mm, t=1 mm, and �=0.9, for
Inconel 625 �k=21 W /m K� and Cb-752 �k=48 W /m K� at
Mach 6–8, are plotted in Fig. 6�b� for a range of design lengths.
This temperature is a function of the material thermal conductivity
with higher conductivity leading to lower Tmax. The corresponding
heat flux through the surface into the heat pipe is

q̇ =
k�Tmax − Tiso�

Ri ln
Rle

Ri

�13�

Stresses. Because the structure is metallic, the Mises stress near
the leading edge �where the temperature is largest�, relative to the
yield strength, governs the integrity. To estimate the thermo-
elastic stress �no yielding�, the reference state is taken to be the
long straight segment at Tiso. The thermal expansion misfit of the
tip region, relative to this state, generates a stress. Neglecting
bending �justified later�, the stress is dominated by the out-of-
plane strain misfit and varies through the thickness as

�eq�r� = �E�T�r� − Tiso� �14�
The maximum at the exterior surface is plotted in Fig. 8 over the
relevant range of Mach numbers. The maximum increases with
larger L because, as the length increases, the total heat radiated
away increases, despite the decreased overall temperature, requir-
ing a larger thermal gradient at the leading edge to provide the
greater heat flux. Hence, as the design length increases, the maxi-
mum temperature decreases while the maximum stress increases.
Cross-plots of the relation between maximum stress and maxi-
mum temperature are shown in Fig. 3 for comparison with the
material yield strength at that temperature. For longer design
lengths �toward the left side of the graph� and lower Mach num-
bers, the operational conditions are clearly within the elastic en-
velope of the materials. However, above Mach 6, the stresses
exceed the yield strength of Inconel 625 at the operating tempera-
tures, thereby excluding this alloy from use. Conversely, Cb-752
retains its integrity even up to Mach 8, due to its combination of
thermomechanical properties discussed below.

Without a heat pipe. In the absence of a heat pipe, heat is
transferred only by longitudinal conduction along the curved re-
gion into the radiating surface, resulting in the temperature distri-
butions plotted in Fig. 9 for Mach 7 flight for a Cb-752 leading
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Fig. 6 The leading edge temperatures calculated analytically
„lines… over the relevant range of parameters, and by finite ele-
ments „circles and crosses… at Mach 6 and 8 for a vehicle with
Rle=3 mm, �=0.9, and �=6 deg. „a… The isothermal tempera-
ture approximation as a function of the length of the radiating
surface. Note that the analytical predictions are identical for the
two materials, and that the finite element calculations at Mach 6
for Inconel 625 and Cb-752 fall on top of each other. „b… The
maximum temperature at the stagnation point on the surface of
the leading edge for Inconel 625 „dots and crosses… and Cb-752
„dashes and circles….
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Fig. 7 A sketch of the region along the stagnation line for
which the temperatures are solved by a cylindrical finite differ-
ence scheme
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edge. A steep temperature gradient develops along the length and
the maximum temperatures become insensitive to L. Comparison
with Fig. 6 demonstrates the importance of having a functioning
heat pipe.

3.2 Finite Element Calculations. Method. All calculations
are conducted using the commercial finite element code ABAQUS.
In the analysis, eight-node coupled temperature-displacement gen-
eralized plane strain elements are used. Symmetry conditions are
imposed on AD in the y-direction and on CF in the x-direction
�Fig. 10�. The solids are incorporated as an elastic/plastic medium
having temperature-dependent yield strength �Fig. 3� with nomi-
nal strain hardening.

The external thermal boundary conditions are the same as those
described in Sec. 2. Outside the entire surface, the air is assigned
the stagnation temperature, with a heat transfer coefficient that
varies spatially over � and s. This temperature difference with
that computed for the solid surface, Tsurf, then governs the inward
heat flux. Radiation to ambient T� from the surface, at Tsurf, de-
termines the outward heat flux. ABAQUS simultaneously solves for
the net flux and Tsurf, as well as the Mises stresses and �when
yielding occurs� equivalent plastic strains. Conduction through the
solid is characterized by a �temperature invariant� thermal conduc-
tivity, k. The action of the internal heat pipe is simulated by im-
posing a thin �1 mm� compliant layer on the inside having excep-
tional effective thermal conductivity, keff �Fig. 1�. Effective
thermal conductivities in excess of 100 times that of solid copper
have been reported �12�. A conservative value of khp
=3 kW /m K was used in all simulations. The thermo-elastic
properties of Inconel 625 and Cb-752 used in the calculations are
those presented in Table 1 and Fig. 3. Results are presented for a

leading edge with radius Rle=3 mm and wedge half-angle �
=6 deg.

Temperatures and heat fluxes. In order to compare with the
analytic estimates, the temperatures have been obtained for the
nickel alloy at Mach 6 and the niobium alloy at Mach 6 and 8 �as
a function of design length�. Representative temperature distribu-
tions are plotted in Figs. 11 and 12 �for L=0.15 m�. The straight
sections, as well as the inside of the curved tip, are at essentially
uniform temperature, identified with Tiso. The outside temperature
at the tip is appreciably hotter, with largest value, Tmax, at the
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Fig. 9 The behavior of the leading edge in the absence of a
heat pipe: The temperature distribution along the length of an
Cb-752 „k=48 W/m K… leading edge at Mach 7 for a range of
design lengths L, assuming that the material is isothermal
through the thickness and that �=0.9, Rle=3 mm, and t
=1 mm
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Fig. 10 A typical finite element mesh used in the simulations.
The solid metallic component is represented in black, while the
heat pipe is in gray.
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stagnation plane. Temperatures defined in this manner are com-
pared with the analytic estimates on the figures. The close corre-
spondence demonstrates the utility of the analytical approach for
initial design purposes. Moreover, temperature comparisons along
the flat section affirm that Tiso is independent of the material
choice. Recalling that Tiso dictates the choice of the working fluid,
then for a 3 mm radius, at Mach 6, either sodium or potassium
should be applicable, while at Mach 8, lithium would be pre-
ferred, as elaborated later.

The corresponding heat fluxes are summarized in Figs. 13 and
14. Those at the external surface are directed inward over the
curved section but outward over most of the flat segment. Conse-
quently, the cumulative heat input reaches a maximum just be-
yond the transition and declines thereafter; by definition, the net
heat input is zero at the design length. The maxima are the most
pertinent since these are the fluxes that must be redistributed by
the working fluid in the heat pipe. These are Qmax=3 kW /m at
Mach 6 and Qmax=7.6 kW /m at Mach 8, with approximate scal-
ing, Qmax�u�

3 . The contours over the curved region affirm that
the flux entering the heat pipe near the stagnation plane is largest:
q̇max�1.2 MW /m2 at Mach 6 and q̇max�3.2 MW /m2 at Mach
8. �Note that these are significantly lower than the cold-wall fluxes
typically cited for leading edges at the same Mach number, alti-
tude and radius.�

Mises stresses. Contours of the Mises stresses are plotted in
Fig. 15. The maxima at the tip are about 10% larger than the
analytic estimates �Fig. 8�. The difference is attributed to a small
bending effect not accounted for in the analytic formula. The re-
sults for Inconel 625 �Fig. 15�a�� reveal that, even at Mach 6, the

stresses approach the yield strength at the associated temperature
�see Fig. 3�. Indeed, the most failure susceptible element at the tip
on the exterior surface is sufficiently close to yield that the safety
margin would be unacceptable. The corresponding Mises stress
contours for the niobium alloy �Fig. 15�b�� reveal much larger
margins of safety, even at Mach 8. The niobium alloy is preferable
because of its higher conductivity, lower modulus, and lower ther-
mal expansion, all of which decrease the maximum stress.

Fig. 13 Heat flows at Mach 6 for an Inconel 625 leading edge.
„a… Contours of heat flux at the design length L=0.15 m and �
=0.9. „b… Local heat flux into the exterior surface. „c… Integrated
heat input from the leading edge. At the design length the net
total heat input is zero.

Fig. 14 Heat flows at Mach 8 for a Cb-752 leading edge. „a…
Contours of heat flux at the design length L=0.15 m and �
=0.9. „b… Local heat flux into the exterior surface. „c… Integrated
heat input from the leading edge. At the design length the net
total heat input is zero.
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Fig. 15 Mises stress contours when the heat pipe is function-
ing: „a… Mises stresses for Mach 6 with nickel-based superalloy
Inconel 625; and „b… Mises stresses for Mach 8 with niobium
alloy Cb-752
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Coupled with greater yield strength at higher temperatures, nio-
bium alloys are clearly a superior design choice.

4 Influence of Coatings and Transients
Coatings. The nickel and niobium alloys to be used may require

oxidation protection coatings to assure multiflight capability. This
is especially true for the Nb alloys being contemplated for use at
the higher Mach numbers. To examine the possible effect of these
coatings on temperatures in the system, a numerical calculation
has been conducted for a Mach 7 design using a Cb-752 alloy
with an oxidation protection coating having thickness tcoat
=100 m. The coating is considered to be highly insulating, with
thermal conductivity, k=1 W /m K. The temperature results are
summarized in Fig. 16. Note that the maximum temperature de-
veloped in the niobium has been reduced relative to that without
the coating, but the coating surface becomes extremely hot. More-
over, a large temperature gradient is induced in the coating, with
high likelihood of delamination �13�. The impact of coatings on
the viability of the envisioned leading edge systems thus requires
careful assessment that balances their benefits in environmental
protection with their adverse susceptibility to spalling.

Transients. Time-dependent calculations of heat diffusion
through the leading edge elucidate the transient behavior of the
system at startup. The leading edge at ambient temperature is
instantaneously exposed to flight conditions. To activate the heat
pipe, a minimum critical temperature, Tcr, must be attained at the
back face; subsequently it provides heat transport dependent on
the ensuing back face temperature. The heat pipe is assumed to
obey a heat flux law

q̇ = 
 Tbf − Tcr

Tiso − Tcr
�m

q̇ss �15�

where Tbf is the instantaneous temperature at the back face, q̇ss is
the heat flux at the steady state, as calculated by Eq. �13�, and m
is an exponent governing the rate of heat pipe startup. Once the
back face reaches Tiso, the heat flux in the system is in equilib-
rium. The time-dependent thermal behavior of the Mach 7 Cb-752
system is shown in Fig. 17�a� for Tcr /Tiso=0.9 and m=1.

Three transient phases are evident.
Phase I. The temperature of the outer surface rises quickly. The

back face temperature rises more slowly, as heat diffuses through
the thickness, causing an initial rapid stress elevation �see Fig.
17�b��; this phase concludes with a local maximum in stress.

Phase II. The system moves toward thermal equilibrium. The
Mises stress gradually declines because the temperature of the
back face increases more quickly than the temperature of the front
face.

Phase III. The heat pipe begins to operate. This activation dra-
matically slows the rise in back face temperature, as the Mises

stress increases to a global maximum. These calculations suggest
that the maximum stress during the transient phase does not ex-
ceed that at steady state. However, the results are highly depen-
dent on the choice of the startup temperature and the rate expo-
nent. Experiments and detailed modeling of the heat pipe are
needed to choose these accurately.

5 Heat Pipe Limitations
Heat pipes can fail when the heat transfer rate within the pipe is

insufficient to transport the incident heat flux. Several operational
phenomena affect this limit �12,14�. Only three are relevant to the
leading edge environment: �i� the sonic limit, encountered when
the mean vapor flow velocity approaches transonic values; �ii� the
capillary limit, which arises when the drops in liquid and vapor
pressures approach the capillary pumping pressure available
within the wick; and �iii� the boiling limit, occurring when a criti-
cal superheating of the vapor is attained and bubbles stabilize in
the wick of the evaporator zone. Detailed analyses of these phe-
nomena, which relate these limits to the thermophysical properties
of the working fluid, were derived for a hollow cylindrical heat
pipe �12,14,15�, which is not directly applicable here. For the
leading edge, the corresponding analysis has been conducted for
the geometry depicted in Fig. 18, and the upper portion of the
leading edge is treated as a planar heat spreader. The leading edge
is constructed either from Inconel 625 with thermochemically
compatible sodium as the working fluid, or Cb-752 with lithium
as the working fluid. The wick system is a woven wire mesh of
the same material as the case.

5.1 Sonic Limit. The sonic limit is reached when the ab-
sorbed thermal flux per unit width is given by �14�

Fig. 16 The temperature distribution through a niobium lead-
ing edge with a 100 �m anti-oxidation environmental barrier
coating for a Mach 7 vehicle
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Fig. 17 The idealized behavior of the leading edge during the
startup phase for a Cb-752 leading edge at Mach 7. „a… The
temperature at the external surface Tmax, at the back surface
Thp, and the difference between the two temperatures Tdiff. „b…
The resulting Mises stress at the stagnation point.
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Qmax
son = V�v�
 �RgTiso

2�� + 1��
1/2

�16�

where V is the vapor space height �see Fig. 18�, �v is the vapor
density, � is the latent heat of vaporization of the working fluid, �
is the heat capacity ratio ��=1.67 for monatomic sodium and
lithium vapor�, and Rg is the gas constant for the vapor species
within the heat pipe �RNa=361 J /kg K and RLi=120 J /kg K�.
The isothermal operating temperature of the heat pipe Tiso �which
equals the liquid-vapor saturation temperature� is limited by the
onset of rapid softening and high creep rate of the case material.
Note that only at low Tiso is the sonic limit likely to restrict the
heat transport rate.

5.2 Capillary Limit. The capillary limit can be derived by a
pressure balance across the length of the heat pipe

�Pmax
cap = �Pl + �Pv �17�

where �Pmax
cap is the maximum capillary pumping pressure, with

�Pl and �Pv the liquid and vapor pressure drops, respectively.
The additional pressure drops attributed to inertial effects upon
evaporation and condensation of the working fluid are deemed
negligible �14�. The maximum capillary pumping pressure is
given by the Young–Laplace equation �12,14,15� as

�Pmax
cap =

2�

Reff
�18�

where � is the liquid surface tension and Reff is the “effective pore
radius” �the radius of curvature at the liquid-vapor interface in the
evaporator zone�, which is a function of the porous wick geom-
etry. Its value has been experimentally determined for numerous
wick structures and porosities. The assumed effective pore radius
is Reff=1.27
10−4 m, which corresponds to a woven mesh wick
with �4 cells /mm �14�.

The maximum pressure drop in the liquid within the wick can
be calculated from Darcy’s model of laminar flow through a po-
rous medium

�Pl =
�lQmax

cap

4�bw�l�
Ltot �19�

where �l is the liquid dynamic viscosity, � is the wick permeabil-
ity, bw is the wick thickness, and �l is the liquid density. The
woven mesh wick with four unit cells per millimeter has perme-
ability of �=1.93
10−10 m2 �14�. The absence of an adiabatic
section implies that the evaporator zone length Le and the con-
denser zone length Lc together occupy the entirety of the heat pipe
such that Ltot=Le+Lc.

When inertial forces dominate viscous forces, and the vapor is
in the incompressible, laminar flow regime, as is the case here, the
maximum vapor pressure drop can be derived from the governing
equations describing the velocity distribution for fully developed
fluid flow in a rectangular duct

�Pv =
6�vQmax

cap

V3�v�
Ltot �20�

where �v is the vapor dynamic viscosity.

Substituting Eqs. �18�–�20� into Eq. �17� and solving for Qmax
cap

give an expression for the maximum absorbed thermal flux per
unit width when constrained by capillary pumping limits

Qmax
cap =

4��

LtotReff

12�n

V3�v
+

�l

2�bw�l
�−1

�21�

Liquid sodium has a heat of vaporization two orders of magnitude
lower than liquid lithium at the same temperature, suggesting that
the capillary limit is particularly relevant to the sodium-Inconel
system.

5.3 Boiling Limit. The boiling limit is reached first where the
thermal flux is largest, at the point where the stagnation line in-
tercepts the inner surface of the heat pipe wall �see Figs. 13�a� and
14�a��. From direct application of Fourier’s law, the boiling limit
is given by

q̇max
boi =

kw

bw
�Tcrit �22�

where kw is the thermal conductivity of the saturated wick. The
critical superheat, �Tcrit, is given by �14�

�Tcrit =
2�Tiso

��v

 1

Rb
−

1

Reff
� �23�

where Rb=10−7 m is an order-of-magnitude estimation of the
bubble radius at nucleation. The saturated thermal conductivity for
a sintered woven mesh wick is given by

kw = kl
 ks

kl
��1 − ��0.59

�24�

where kl is the liquid thermal conductivity, ks is that for the solid,
and � is the wick porosity ��=0.63�. The maximum heat flux at
the stagnation line, q̇max, must be less than the allowable maxi-
mum local heat flux, q̇max

boi .
For the geometry under consideration, the heat flux into the

heat pipe is not uniform. We define the evaporator length as Le
=Qmax / q̇max, where q̇max is the maximum heat flux entering the
vapor from the heat pipe wall at the stagnation point �see Figs.
13�a� and 14�a��. The total heat, which can be transferred from the
wall to the fluid, is conservatively given by

Qmax
boi = q̇max

boi Le �25�

5.4 Operational Limit Comparisons. The sonic, capillary,
and boiling limits are functions of temperature-dependent thermo-
physical working fluid properties, namely, the liquid and vapor
densities, heat of vaporization, liquid surface tension, and the liq-
uid and vapor viscosities. Values of these properties for sodium
and lithium can be found in Ref. �16�, resulting in the limits for
the sodium/Inconel 625 and lithium/Cb-752 systems plotted in
Figs. 19 and 20. The results in Figs. 13 and 14 give Le
�2.4 mm for both the Mach 6 and Mach 8 designs, and vapor
space height V=4.5 mm and wick thickness of bw=1 mm have
been assumed. Both plots affirm that the heat pipes are functional
under the proposed flight velocities and altitudes. While other
limitations on the heat pipe operation exist, such as acoustic fluc-
tuations due to aerodynamic loadings, they are currently beyond
the purview of the standard models presented here.

6 Concluding Comments
This paper contains a systematic method for calculating heat

fluxes, temperatures and thermal stresses in a sharp leading edge
of a hypersonic vehicle which has an integrated planar heat pipe.
The boundary conditions are ascertained through the use of stan-
dard expressions involving the flight velocity and altitude, the
atmospheric properties, and the geometry of the vehicle. The tem-
peratures and stresses in the leading edge are calculated using
simple approximations, which are verified with finite element

L

Plane of symmetry
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V

Return fluid flow

Thermal flux out

Evaporation

Conden
sation

Vapor fl
owThermal

flux in

Thin, high thermal
conductivity skin
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0

Fig. 18 A cross-sectional schematic showing the operating
principles and relevant geometry of a heat plate leading edge
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simulations. Conventional heat pipe estimates are then used to
show the feasibility of planar metallic leading edge heat pipes. It
is shown from these results that the niobium alloy Cb-752 is a
better heat pipe material than the nickel alloy Inconel 625, and
that a Cb-752 heat pipe with a lithium working fluid is a feasible
choice for a 3 mm radius leading edge at Mach 8 or below.

The validity of the results presented here is highly dependent on
choosing the correct thermal boundary conditions. The Fay–
Riddell equations �8� are the most widely accepted technique for
calculating leading edge heat flux, and the Sutton–Graves corre-
lation �10� is a good approximation of these results. This paper
has extrapolated from the cold-wall heat flux to determine a hot-
wall heat transfer coefficient. It is believed that this is a conser-
vative extrapolation; that is, the heat transfer coefficient should
not increase with decreasing temperature gradient.

The isothermal approximation used in the analysis assumes the
ideal functioning of the heat pipe. This assumption cannot be vali-

dated through the finite element simulations performed here. In-
stead, a full model of the internal workings of the heat pipe is
required, including evaporation, condensation, and vapor and liq-
uid transports. Such a model is beyond the scope of this paper.
However, such validation can also be provided experimentally, so
planar heat pipes are being built and tested in a laser facility,
which delivers high heat flux to the leading edge. While these
experiments cannot replicate the boundary conditions encountered
during flight, the validity of the isothermal assumption and the
expression for the maximum temperature can be ascertained by
implementing the corresponding boundary conditions in the ana-
lytical models.
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An Experimental Study of Contact
Forces During Oblique Elastic
Impact
Low and high speed impacts frequently occur in many mechanical processes. Although
widely studied, rarely are normal and tangential force time-waveforms measured, as
generally these are very difficult measurements to do accurately. This paper presents, for
the first time, a comprehensive set of experimentally obtained contact force waveforms
during oblique elastic impact for a range of initial velocities and incidence angles. The
experimental apparatus employed in this study was a simple pendulum consisting of a
spherical steel striker suspended from a steel wire. The contact force time-waveforms
were collected using a tri-axial piezoelectric force transducer sandwiched between a
spherical target cap and a large block. The measured contact forces showed that loading
was essentially limited to the normal and tangential directions in the horizontal plane.
Analysis of the maximum normal and tangential forces for the near glancing angles of
incidence indicated a friction coefficient that varies linearly with initial tangential veloc-
ity. The essential features of tangential force reversal during impact predicted by previous
continuum models are confirmed by the experimental force results.
�DOI: 10.1115/1.3063634�
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1 Introduction
Impact, or stereomechanics, has played a prominent role in the

early studies of applied dynamics, and many famous figures such
as Galileo, Mariotte, Descartes, Huygens, Newton, and Euler are
known to have been interested in both the experimental and mod-
eling aspects of impact �1�. Today, there are still many aspects of
impact mechanics that are not well understood. The past 30 years
have seen a significant amount of research activity on modeling
oblique impact as it applies to several areas of engineering interest
including tube/support interactions, granular flows, and robotic
tasks.

Early approaches to impact modeling focused on rigid body
approaches that applied the laws of conservation of linear momen-
tum and an assumed coefficient of restitution to provide the solu-
tion of postimpact velocities. In the early models of oblique im-
pact, it was assumed that no tangential force acted during impact
so that the tangential velocity remained unchanged.

As the understanding of applied mechanics grew, the solution
methods for the tangential force during oblique elastic impact be-
gan to be considered. Coulomb’s friction law dictated that a fric-
tion force should act to decrease the tangential velocity for certain
angles of incidence during impact. This implies that for high in-
cidence angles �measured from normal�, relative sliding of the two
colliding bodies occurs throughout the impact duration. Further
advances in the field of continuum mechanics indicated that even
for near normal angles of incidence, tangential forces would be
expected to develop due to the compliance of the colliding bodies.
Unfortunately, these compliance relationships can be difficult to
derive for all but the simplest contact zone geometries.

Maw et al. �2� provided the first continuum model solution for
the problem of oblique elastic impact of spheres. Their analysis
showed that oblique impact could be divided into three incidence

angle regimes. For low incidence angles, the impact begins with
full sticking of coincident points of the two bodies in the contact
zone. The tangential force is less than the limiting friction value2

and reverses direction at some point during the impact duration.
Full sliding may begin at some point toward the end of impact.
For intermediate angles, the impact begins with full relative slid-
ing of coincident points in the contact zone, and the tangential
force is equal to the limiting friction value. At some point during
the impact, coincident points on some central portion of the con-
tact zone begin to stick together, while coincident points on the
outer annulus of the contact zone may still have some relative
slipping. The tangential force leaves the limiting friction envelope
and reverses direction. Reverse sliding of the coincident points
occurs toward the end of impact, with the tangential force equal to
the negative limiting friction value, and persists until contact is
lost. For high incidence angles, full sliding persists throughout
impact, and the tangential force is equal to the limiting friction
value throughout. The division of low, intermediate, or high inci-
dence angle is dependent on the material properties, friction, and
geometry of the impacting bodies.

Many of the experimental studies on oblique impact that have
been reported in the literature have focused on pre- and postim-
pact velocity results of the colliding bodies �2–11� rather than on
contact force results. This information has been collected using
high speed and/or stroboscopic photography. The results for sev-
eral different material and geometric combinations have been pre-
sented. Those listed above are limited to cases of either spheres or
disks impacting flat plates, or oblique impact of similar spheres.
Also, the results for various initial velocities have been presented.
In general, the results are consistent with the numerical model of
Maw et al. �2� and show that the rebound angle of the contact
point on the unconstrained body is negative �i.e., rebounds back
toward the tangential approach direction� for near normal angles
of incidence and positive for larger incidence angles.

1Corresponding author.
Contributed by the Applied Mechanics Division of ASME for publication in the

JOURNAL OF APPLIED MECHANICS. Manuscript received March 11, 2008; final manu-
script received September 18, 2008; published online March 13, 2009. Review con-
ducted by Thomas W. Shield.

2Under an assumption of a constant Coulomb friction coefficient, the tangential
force is limited to the product of the friction coefficient and the current normal force.
For reversed sliding, the tangential force is equal to the negative of this product.
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Experimental studies reporting the actual contact forces during
oblique impact have been less common than those that report pre-
and postimpact velocity values. Lewis and Rogers �12,13� col-
lected oblique impact force data using a pendulum apparatus con-
sisting of a steel ball attached to the bottom of an aluminum tube.
The pendulum could be set so that the steel ball would strike a
tri-axial piezoelectric force transducer at various incidence angles
and initial velocities upon release. Calculation of the instanta-
neous ratio of tangential to normal force showed that the apparent
coefficient of friction would start and end at zero and would rise
to an approximate plateau at some point during the impact. For
incidence angles less than about 40 deg from normal, the friction
coefficient plateau value varied approximately linearly with im-
pact angle; the friction coefficient plateau value was approxi-
mately constant for angles larger than 40 deg �12�.

Experimental contact force waveform results for oblique elastic
impact were presented by Osakue and Rogers �14�. In this study, a
steel sphere suspended at the end of an aluminum tube pendulum
was allowed, upon release, to obliquely impact a flat steel cap at
various velocities and incidence angles. A single tri-axial piezo-
electric force transducer, sandwiched between the cap and a steel
mounting block, was used to obtain time-waveforms of the normal
and tangential contact forces in the horizontal plane during im-
pact; the vertical tangential force waveform was used to align the
vertical position.

The results showed that the apparent coefficient of friction was
weakly dependent on the velocity and could be described by a
bilinear function of the incidence angle. Tangential force reversal
occurred during the impact duration for several cases considered
in this study. However, agreement between these results and those
predicted by the previous models is difficult to judge as normal-
ized tangential force waveforms were not included �14�.

Cross �15� collected normal and tangential force waveforms for
various balls bouncing against a flat piezoforce plate with various
angles of incidence. The piezoforce plate, which provided the nor-
mal impact force results, was mounted on a wooden block that sat
on cylindrical rollers. An inexpensive piezodisk was mounted on
the side of the wooden block and responded to its acceleration.
The tangential impact forces were found from the piezodisk’s ac-
celeration signal.

The balls used in this study included a tennis ball, a superball,
a golf ball, a baseball, and a basketball. The results showed that
tangential force reversal occurred for several of these balls at near
normal angles of incidence. For higher angles of incidence, the
tangential force waveforms were consistent with those expected
for full sliding throughout impact. Cross also found that the
postimpact spin of the ball was larger than that expected from the
tangential force alone and surmised that the normal force may
provide additional angular momentum to the ball by acting verti-
cally through a point behind the ball’s center.

The results given in the present paper were obtained using a
similar pendulum apparatus as that used by Osakue and Rogers
�14�. The aluminum tube has been replaced by a steel wire, the
striking sphere has been replaced by a symmetrically shaped
spherical striker, and a spherically shaped target cap is used in-
stead of a flat cap. All three signals from the tri-axial force trans-
ducer were collected during the experiments, and the apparatus
was very carefully aligned so that loading was effectively limited
to the normal and tangential directions in the horizontal plane. The
results present, for the first time, comprehensive sets of force
waveforms that clearly show the phenomenon of tangential force
reversal during oblique elastic impact. When properly normalized,
these sets of force waveforms show wonderful consistency with
one another and very reasonable agreement with previous theory.

2 Experimental Apparatus
A schematic of the experimental apparatus used in this study

can be seen in Fig. 1. The apparatus is a simple pendulum setup
with a spherical striker suspended on a steel wire. A magnetic

gripper arm, which can be rotated to provide various incidence
angles, is used to provide an initial offset of the pendulum. Upon
release, the pendulum swings downward through a small distance
and strikes a steel target cap having a spherical surface. A tri-axial
piezoelectric force transducer is sandwiched between the target
cap and a large steel mounting block. The mounting block is held
in position using six bolts mounted on small angle-iron pieces
located on the sides and back of the mounting block.

The actual initial velocity and incidence angle are precisely
measured using two pairs of proximity sensors, which are housed
on the mounting block. The proximity sensors measure the gap
distance between themselves and two steel cubes that extend
above and below the striking sphere. Each set of proximity
sensors—one set above the force transducer and one below—
consists of one sensor oriented along the normal impact direction
and one sensor oriented to measure horizontal tangential motion.

2.1 Apparatus Components. The mounting block for the
force transducer and proximity sensors can be seen in Fig. 2. The
mounting block consists of three sections: the upper and lower
sections hold the proximity sensors; the force transducer is at-
tached to the middle section. In order to reduce mounting block

Fig. 1 Schematic of experimental apparatus

Fig. 2 Spherical striker and mounting block
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natural frequency contamination of the force transducer’s signal, a
special damping material3 was placed between the mounting
block sections, which were held together using four bolts.

The radius of curvature of the steel �E=207 GPa; �=0.3; �
=7800 kg /m3� target cap’s striking surface was 20 mm. A
threaded rod, attached to the back of the cap, passes through the
center of the transducer and preloads the force sensor by threading
into the middle section of the mounting block.

The spherical striker and cubical proximity sensor targets are
also shown in Fig. 2. The striker consists of a 40 mm diameter
steel sphere with two 10 mm diameter, 20 mm high steel cylinders
extending above and below. The proximity sensor targets are
small steel cubes �16�16�16 mm3� with cylindrical holes
through their centers and fastened using set screws. This design
allowed for interaction with the proximity sensors while avoiding
significant rocking of the sphere on impact.

The composite mass moment of inertia of the striking sphere
has a calculated value of I=5.043�10−5 kg m2. A simple experi-
mental exercise using a small accelerometer attached to the bot-
tom cube gave an estimated moment of inertia within 7% of this
value. The total mass of the spherical striker is 336.4 g.

2.2 Sensors and Data Acquisition. The contact forces were
measured using a single Kistler™ �Winterhur, Switzerland� type
9251 piezoelectric force transducer �16�. This sensor is able to
produce three charge signals proportional to the forces applied to
the face of the transducer in three directions—one normal and two
tangential. Three Kistler™ 5010B charge amplifiers were used to
convert the charge signals into the appropriate voltage values.

The sensitivity of these sensors is dependent on installation
�17�, and therefore, calibration of each force sensor is required
with each different application. In order to calibrate all three di-
rections of the sensor and determine the appropriate sensitivities
to be used for the impact study, a special calibration apparatus was
constructed. This apparatus and the results of the calibration are
the topics of another paper �18�.

The proximity sensors used to collect initial velocity and inci-
dence angle data were 5 mm diameter Bently Nevada™ �Minden,
NV� eddy current sensors �model 20886-01 NFMP� with Proximi-
tor™ signal conditioning units �model 20885-0�. The return coil
in these sensors measures the voltage drop as a metallic object
passes through the magnetic field created by the source coil of the
sensor. By measuring this voltage drop, the gap distance between
the object and the sensor can be recorded. Calibration was per-
formed in order to determine the correct voltage to distance con-
version for these sensors using a micrometer equipped, spring
loaded sled.

The data from all of the sensors were collected using two Na-
tional Instruments™ �Austin, TX� PCI-6110 data acquisition
boards, which were synchronized using a real time system inte-
gration �RTSI� cable. The resolution of these simultaneous sam-
pling boards is 12 bits, and the data were sampled at 5 MHz/
channel.

3 Experiment Preparation
The alignment procedure was an iterative process with data

from several impacts being collected at nominal angles of
+10 deg, 0 deg, and �10 deg. During this procedure, only the
force transducer signal data were collected, as the tangential prox-
imity sensors would interfere with the pendulum approach for the
�10 deg tests.

Figures 3�a�–3�c� show the final alignment results of the normal
�z-axis�, horizontal �x-axis�, and vertical �y-axis� force signals for
five trials at the 0 deg position, respectively. The five normal force
signals shown in Fig. 3 are virtually identical. The normal force
appears as an approximate sine-squared wave with very little

postimpact ringing. The horizontal and vertical force signals show
an almost random type waveform of less than 1% of the normal
signals. As the crosstalk between the measuring directions for
these sensors is listed as 1% �16�, this level in the two tangential
directions is accepted as essentially zero. The amount of postim-
pact ringing on the horizontal and vertical signals is on the same
level of the actual forces generated during impact for this case.

The three force signals for five trials at the +10 deg and �10
deg positions are shown in Figs. 4�a�–4�c�. As can be seen in Fig.
4�a�, the normal force results of the five trials at +10 deg match
those of the five trials at �10 deg very closely, so much so that it
is difficult to distinguish between them.

The horizontal forces depicted in Fig. 4�b� show reasonable
symmetry between the five trials at the +10 deg position and the
five trials at the �10 deg position. Also, there is very little vari-
ability between the trials at similar angles. These waveforms show
the characteristic sign reversal at about 60% of the impact dura-
tion. Somewhat interestingly, the postimpact ringing in the signal
exhibits symmetry, but its level is small compared with the as-
sumed actual horizontal force.

3Material No. DS-125 by H.L. Blachford Ltd. �Mississauga, Ontario, Canada�.

Fig. 3 Alignment procedure results at 0 deg. „a… Normal force,
„b… horizontal force, and „c… vertical force.

Fig. 4 Alignment procedure results at +10 deg and �10 deg.
„a… Normal force, „b… horizontal force, and „c… vertical force
„+10 deg, solid line; �10 deg, dashed line….
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Figure 4�c� shows that the vertical force waveforms for all ten
trials are approximate sine waves, and the postimpact ringing por-
tion of the signal is of a lower level. The characteristic shape of
the signal during impact could be caused by rocking of the spheri-
cal striker due to either the imperfect symmetry of the striker
about a horizontal plane or to a slight misalignment of the target
cap and spherical striker. Another possible cause of the apparent
rocking of the striker could be that the horizontal and vertical
directions of the force sensor are not perfectly aligned with true
horizontal and vertical. Since the level of force in this signal is
within the allowable crosstalk between the sensor directions, this
vertical force is taken as negligible.

Once the mounting block was assumed to be positioned cor-
rectly with respect to the master plate, experimental data were
collected for 3 different nominal initial velocities—30 mm/s, 60
mm/s, and 90 mm/s—and 13 incidence angles—0–50 deg in steps
of 5 deg, and 60 deg and 70 deg—for each of the nominal initial
velocities. Six sets of data for each combination of nominal inci-
dence angle and initial velocity were collected. The data were
collected randomly within each nominal initial velocity, with the
90 mm/s data being collected first, followed by the 60 mm/s and
then the 30 mm/s data. At the beginning of every nominal initial
velocity and at every ten impacts thereafter, the surfaces of the
target cap and spherical striker were cleaned using an ethanol
solution to remove any possible surface buildup or debris.

4 Experimental Results

4.1 Initial Conditions. By calculating the rate of change in
gap distance measured by the proximity sensors, one can find the
approach velocity in both the normal and horizontal tangential
directions and the incidence angle. Since the apparatus was
equipped with four proximity sensors—two normal and two
tangential—redundant information was collected. The decision to
use all four sensors was driven by a desire to ensure proper ap-
proach motion of the striker.

Once the velocities at the proximity sensor locations had been
found, they had to be transferred to equivalent velocities at the
target cap. The velocity at the target cap whether measured from
the top or bottom set of proximity sensors showed essentially
identical results. The measured velocity values are taken as the
mean of the top and bottom velocity measurements. The measured
incidence angle is then calculated from

� = arctan�Vx,0

Vz,0
� �1�

where the x-axis is the horizontal tangential direction and the
z-axis is the normal direction, as shown in Fig. 2. The actual
initial velocity of the striker is found from

V0 = �Vz,0
2 + Vx,0

2 �2�

and had values of V0=27.78�0.98 mm /s for nominal 30 mm/s,
V0=58.11�0.67 mm /s for nominal 60 mm/s, and V0
=88.21�0.84 mm /s for nominal 90 mm/s. These are the mean
values �1 standard deviation over all six trials at the 13 incidence
angles.

4.2 Impact Force Waveforms. The presented force results
are limited to the normal �z-axis� and horizontal �x-axis� tangential
force waveforms. The vertical �y-axis� force waveforms for all
tests were very similar to those seen in Figs. 3�c� and 4�c�. In all
cases, the vertical force signal during impact was within �2.5%
of the maximum normal force and therefore is considered negli-
gible. Any discussion of tangential force in the remainder of this
paper refers to the tangential force in the horizontal plane.

Although data were collected at 13 incidence angles for the
three nominal initial velocities, in the interest of brevity Fig. 5
shows the normal �left side� and tangential �right side� force
waveforms for five incidence angles—0 deg, 15 deg, 30 deg, 45
deg, and 70 deg—for the nominal initial velocity of 90 mm/s.

These graphs show all six trials for each incidence angle. Included
in these graphs is the useful impact signal plus some postimpact
signal. The postimpact ringing on the normal force signals is very
small in all cases. The normal force waveforms show an approxi-
mate sine-squared type shape that is consistent with a Hertzian
impact model. The normal force waveforms show decreasing
maximum values and slightly increasing impact duration4 as the
incidence angle increases. In general, the variation in the force
waveforms for any test case is quite small.

The tangential force waveforms show different characteristic
curves depending on the actual incidence angle of the impact. For
near zero incidence angles, the tangential force waveforms show a
relatively small signal throughout the impact, with the postimpact
ringing being of a similar level as the signal present during im-
pact. For incidence angles of 15 deg, 30 deg, and 45 deg, the
tangential force reverses direction within the impact duration.5

The maximum and minimum tangential forces, as well as the time
of tangential force reversal, increase with incidence angle. The
postimpact ringing present in these signals is significant, and it
would be reasonable to assume that the system natural frequencies
slightly affect the force signals during impact. The variation in the
tangential force waveforms is also quite small.

4The impact duration as judged from the normal force waveforms is taken as the
time, after initial contact, at which the normal force crosses zero.

5The impact duration as judged from the tangential force waveform depends on
whether tangential force reversal is expected and clearly present. For near normal
incidence angles where tangential force reversal is clearly present, the impact dura-
tion is taken as the time at which the tangential force makes its second zero crossing
�i.e., the first zero crossing after the reversed force direction phase�. For glancing
incidence angles, the impact duration as judged by the tangential force waveform is
taken as the first zero crossing of tangential force after the initial contact.

Fig. 5 Experimental contact force waveforms during impact
for initial velocity of 90 mm/s „normal force, left side; tangential
force, right side…
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At the nominal incidence angle of 70 deg, the tangential force
waveforms do not appear to reverse direction during the impact.
However, the postimpact ringing portion of these signals is sig-
nificant and somewhat impairs the ability to judge whether the
force reverses and to judge the exact time of the end of impact.

Very similar plots were obtained for nominal initial velocities
of 30 mm/s and 60 mm/s. As expected, the maximum normal
force decreased and the impact duration increased with decreasing
initial velocity.

In some cases, the resolution of the graphs of experimental
force waveforms does not give a good sense of the variation in
these waveforms from trial to trial. As such, several parameters
were isolated and plotted against the incidence angle in Fig. 6.
These are the maximum normal force, Fz,max; the impact duration
as judged from the normal force waveform, �z; the maximum
tangential force, Fx,max; the impact duration as judged by the tan-
gential force waveform, �x; and, if judged applicable, the mini-
mum tangential force, Fx,min, and the time of tangential force re-
versal, �x,R.

As can be seen in Fig. 6�a�, the maximum normal forces de-
crease with increasing incidence angle and decreasing initial ve-
locity. The standard deviation �shown by error bars� of the maxi-
mum normal forces between trials at similar incidence angles is
reasonably small. Figures 6�b� and 6�c� show the trends in maxi-
mum and minimum tangential forces, respectively. The complex
nature of the relationship between friction, normal force, and in-
cidence angle on which the tangential force depends makes it
difficult to draw any conclusions as to the correctness of these
trends; however, the standard deviation of the values between tri-
als at similar incidence angles shows that the variation in the
waveforms is reasonably small.

The impact time parameters shown in Figs. 6�d�–6�f� appear to
be somewhat more variable and do not follow expected trends in
some instances. For strictly normal impact, the impact duration is
given by �19�

� =
4��2/5�	1/2C2Vz,0

4/5R

5��9/10�Vz,0
�

2.9432C2R

Vz,0
1/5 �3�

where � indicates a gamma function, R is the sphere’s radius, and
the parameter C is given by

C = 	15m�1 − ��
16GR3 
1/5

�4�

where m is the sphere’s mass, G is the shear modulus, and � is
Poisson’s ratio. The results of Eq. �3� are included in Fig. 6�d� and
show reasonable agreement with the experimental results for �z.

Figures 6�d� and 6�f� show the trends in normal and tangential
impact duration estimates, respectively. While the impact duration
as judged from either the normal impact duration, �z, or the tan-
gential impact duration, �x, does show increased time from near
normal to the glancing incidence angles as expected, there are
several cases where higher incidence angles show lower impact
durations than those of lower incidence angles. With the exception
of the lowest and highest incidence angles, the tangential impact
duration, �x, is larger than the normal impact duration, �z, some-
times by nearly 20 
s. This difference in impact duration mea-
surement is somewhat curious, but it seems reasonable that, given
the significant postimpact ringing of the tangential force wave-
forms, this could be caused by system natural frequency contami-
nation of the tangential force signals.

As can be seen in Fig. 6�e�, the time of tangential force rever-
sal, �x,R, shows very small variation for incidence angles of 5 deg,
10 deg, and 15 deg for all three nominal initial velocities. Above
these values, the time of force reversal increases with incidence
angle and decreasing initial velocity.

4.3 Friction Models. Previous studies �2,20� indicate that
trends in the expected tangential impact forces are difficult to
identify outside of the framework of normalization of these forces.
This normalization scheme is dependent on a properly identified
friction coefficient or friction model. Although a full examination
of the possible friction models and the factors that lead to differ-
ences in the friction data is beyond the scope of this study, an
appropriate friction model is required for normalization of the
experimental data.

At glancing incidence angles, from about 55 deg and higher, the
tangential force should be equal to the product of the friction
coefficient and normal force throughout the impact. This corre-
sponds to full sliding of the coincidence points of the two bodies
throughout the impact duration. The results of the previous simu-
lations �2,20� indicate that use of the ratio of tangential to normal
forces to determine the friction coefficient could also be valid, at
least for the initial portion of the impact duration, for some of the
higher incidence angles that exhibit tangential force reversal.
Therefore, in an effort to increase the number of data points used
to determine the coefficient of friction, the average value of the
ratios of tangential to normal force up to one-half of the impact
duration from the 45 deg, 50 deg, 60 deg, and 70 deg cases is used
in determining the appropriate estimates of the friction coefficient
for the three initial velocity data sets.

Using this method, the estimates of the coefficient of friction
can be found from


 = mean�Fx,t

Fz,t
�, t = 0, . . . ,�z/2 �5�

where Fx,t and Fz,t are the tangential and normal forces at time t,
respectively.

Several researchers have found a dependence of friction on the
relative tangential velocity between the contacting bodies

Fig. 6 Variation of impact force parameters with incidence
angle. „a… Maximum normal force, „b… maximum tangential
force, „c… minimum tangential force, „d… impact duration, �z, „e…
tangential force reversal time, �x,R, and „f… impact duration, �x.
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�14,21,22�, and initial analysis of the friction coefficient estimates
indicated that a velocity dependence could be valid for the present
data. Figure 7 shows linear trends for the friction coefficient val-
ues versus the initial tangential velocities for all three of the initial
velocity cases of this study. As can be seen, the 60 mm/s friction
data exhibit somewhat higher variability than the other two sets of
data. It is clear from the figure that there is not a single friction
curve that is valid for all data used. It is conceivable that the 60
mm/s and 30 mm/s friction data could belong to the same curve;
however it is quite clear that the 90 mm/s friction data would not
fit within the same model. The reason for the different friction
models could be due to fretting wear of the surfaces of the striking
sphere and target cap during the experiments, which was con-
firmed to have occurred by inspection under a microscope after
the collection of the experimental data. In this case, the order in
which the data were collected is significant.

The friction coefficient estimates suggest that a different fric-
tion model should be used for each different set of initial velocity
experimental data. With this approach, each friction curve varies
linearly with initial tangential velocity. In order to determine the
appropriate friction coefficient for use with incidence angles less
than 45 deg, the friction data for each curve were used to extrapo-
late to the appropriate tangential velocities. The collected friction
data were then used to determine friction models given by


30 = 0.1711 + 0.0033 · Vx,0


60 = 0.1260 + 0.0040 · Vx,0 �6�


90 = 0.0744 + 0.0028 · Vx,0

where Vx,0 is the initial tangential velocity and 
30, 
60, and 
90
are the friction coefficient curves for the initial velocities of 30
mm/s, 60 mm/s, and 90 mm/s, respectively. These relationships
are shown as the dashed lines in Fig. 7.

The incidence angle at which the impact commences in full
sliding must now be determined under the framework of a linearly
varying friction model. The normalized value of this incidence
angle is given by �2�

� =
2�1 − ��

�2 − ��

Vx,0

Vz,0
�7�

The general form of a friction model that varies linearly with
tangential velocity is given by


 = 
0 + sVx,0 �8�

where 
0 is the intercept value and s is the slope of the friction
line.

The incidence angle at which the impact commences in full
sliding can be determined by setting �=1 and substituting Eq. �8�
into Eq. �7�. The values of Eq. �6� give 13.2 deg, 12.3 deg, and 7.4
deg for the critical incidence angle for the data sets of the nominal
initial velocities of 30 mm/s, 60 mm/s, and 90 mm/s, respectively.
Despite the rather different friction models of Eq. �6�, these criti-
cal angles are not that dissimilar. For incidence angles greater than
these critical values, one should expect the tangential force to lie
on the limiting friction envelope at incidence.

4.4 Normalized Tangential Force Waveforms. The normal-
ization of the tangential force waveforms contains two major
parts: the normalization of the force values and the normalization
of the time scale. Normalization of the force values is performed
by dividing the tangential force by the product of the friction
coefficient and the maximum value of the normal force waveform.
Normalization of the time scale is performed by dividing the cur-
rent time by the total impact duration. Since the tangential force
waveforms seem more susceptible to system natural frequency
contamination, impact duration estimates from the normal force
waveforms are used in the normalization process.

Figures 8�a�–8�c� show the normalized tangential force wave-
forms for all the incidence angles for a single randomly chosen
trial at the initial velocities of 30 mm/s, 60 mm/s, and 90 mm/s,
respectively. The similarity of these graphs is quite remarkable. As
the incidence angle is increased, the tangential force spends a
higher percentage of the impact duration near the limiting friction
envelope, and the time of tangential force reversal increases.

A few characteristics of the normalized tangential force wave-
forms do not agree with the generally accepted theory for partial
slip models of oblique impact. The most striking is the fact that
for all three cases, the normalized tangential force waveforms
violate the friction envelope in the reversed slip regime toward the
end of impact at all of the higher incidence angles. The reason for
this violation is unclear but, given the significant amount of
postimpact ringing, is most likely related to natural system re-
sponse contamination, which is also believed to be the source of
discrepancy between the apparent impact duration estimates.

At other points during the impact, the tangential force also ap-
pears to lie slightly outside the friction envelope. These do not
appear to be systematic and could be due to a somewhat poorly
defined friction model or, again, system natural frequency re-
sponse contamination.

As can be seen, the 5 deg cases of the 90 mm/s and 60 mm/s
data show a higher degree of waviness than the other waveforms.

Fig. 7 Friction coefficient versus initial tangential velocity
Fig. 8 Normalized tangential force waveforms. „a… 30 mm/s
data, „b… 60 mm/s data, and „c… 90 mm/s data „friction envelope,
dashed line….
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Also, the spacing between the waveforms for the 90 mm/s case is
more uniform than that for the other two cases.

Those points aside, very reasonable agreement is seen in the
force levels of all normalized waveforms of similar incidence
angles between the three initial velocities. The limit of tangential
force reversal is quite consistent, with the 50 deg case for all three
data sets showing reversal prior to loss of contact and the 60 deg
case of all three data sets showing full sliding throughout impact.

4.5 Rebound Angles and Impulse Ratio. As mentioned in
Sec. 1, several researchers �3–5,9–11� have presented the results
of surface rebound versus incidence angles of the contact zone
obtained during oblique impact studies. Typically, these results are
found from pre- and postimpact velocity measurements of the
impacting body obtained from high speed photography. Even
though postimpact velocity information was not collected during
this study, the postimpact velocities can be calculated from the
impulse values obtained from the contact force waveforms. The
normal, tangential, and angular postimpact velocities can be found
from

Vz,N = Vz,0 −
Pz

m
, Vx,N = Vx,0 −

Px

m
, �y,N = �y,0 −

RPx

I
�9�

where �y,0 is the initial angular velocity about the y-axis, and Pz
and Px are the terminal values of the normal and tangential im-
pulses, respectively. The effect of the normal force acting a small
distance behind the center of mass of the spherical striker, due to
elastic tangential deformation, is disregarded in the calculation of
the angular velocity.6

The rebound angle of the contact zone is normalized, similar to
the incidence angle in Eq. �7�, by

 =
2�1 − ��

�2 − ��

�Vx,N + R�y,N�
Vz,N

�10�

where 
 is the appropriate value of the friction coefficient found
from Eq. �6�.

Figures 9�a�–9�c� show the normalized rebound angle versus
normalized incidence angle for the nominal initial velocities of 30
mm/s, 60 mm/s, and 90 mm/s, respectively. These results show
that the normalized rebound angles are negative �i.e., the contact

zone reflects toward the approach direction� over a wide range of
the incidence angles considered. The rebound angles obtained are
quite repeatable, with the 60 mm/s data set showing higher vari-
ability than the 30 mm/s or 90 mm/s data sets. Also, the 70 deg
incidence angle data for all three data sets show much higher
variation than the calculated rebound angles at other incidence
angles. In general, the variations in rebound angle with incidence
angle seen for all three data sets are quite similar and also agree
quite well with the results of previous studies �3–5,9–11�.

Another commonly presented result for oblique impact studies
is the impulse ratio. This value is given by the equation

� =
Px

Pz
�11�

Figures 10�a�–10�c� present the impulse ratio versus incidence
angle for the nominal initial velocities of 30 mm/s, 60 mm/s, and
90 mm/s data sets, respectively. From these graphs, one can see
that the impulse ratios of the experimental data show steadily
increasing values with incidence angle. The results for all three
data sets show an impulse ratio that does not reach a constant
value at some critical incidence angle, as would be expected under
an assumption of constant friction coefficient. Instead, the impulse
ratio is an approximate bilinear function composed of two linear
functions of incidence angle with different slopes. These approxi-
mately linear functions are superimposed on the impulse ratio
plots. These results are strikingly similar to the experimental re-
sults presented by Calsamiglia et al. �3�. Those results, however,
were derived from postimpact velocity information, not impact
force information.

5 Conclusions
The impact force waveforms obtained during oblique impact of

nonconforming elastic bodies with small circular contact zones
have been presented. The results consist of force data from 13
incidence angles and 3 initial velocities. The apparatus used to
obtain the impact forces consisted of a simple pendulum with a
spherical striker attached to a steel wire. The normal force, as well
as horizontal and vertical tangential forces, was collected during
impact using a tri-axial piezoelectric force transducer. This trans-
ducer was located behind a spherical shaped target cap that the
spherical striker impacted upon the release of the pendulum.

The normal force waveforms are consistent with a Hertzian
impact model. As expected, the maximum normal force values
decrease with increasing incidence angle and decreasing initial
velocity. In general, the impact duration increases with incidence
angle and decreasing initial velocity.

6The elastic tangential deformation is expected to be on the order of 10−5 times
smaller than the radius of the spherical striker. Therefore, any moment caused by the
normal force is negligible compared with that caused by the tangential force. This is
different from the findings of the Cross �15� study in which sporting balls that
experienced higher tangential deformation were used.

Fig. 9 Normalized rebound versus normalized incidence
angle. „a… 30 mm/s data, „b… 60 mm/s data, and „c… 90 mm/s data.

Fig. 10 Impulse ratio versus incidence angle. „a… 30 mm/s
data, „b… 60 mm/s data, and „c… 90 mm/s data.
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The experimental horizontal tangential force waveforms con-
firm the essential features of tangential force reversal predicted by
previous continuum models for oblique impact. The vertical tan-
gential force waveforms showed very little signal level, indicating
essentially planar impact. The postimpact portion of the tangential
force signals indicates a higher degree of postimpact ringing than
the normal force waveform. This ringing is believed to be caused
by the natural frequency response of the sensor’s mounting block
and could cause slight contamination of the horizontal tangential
force signal during impact, as well as make it difficult to exactly
judge the end of impact from the horizontal force waveform. Nev-
ertheless, the results present, for the first time, comprehensive sets
of force waveforms that clearly show the phenomena of tangential
force reversal during oblique elastic impact.

Analysis of the ratio of horizontal tangential force to normal
force at near glancing incidence angles indicates that the data are
consistent with a friction coefficient that varies linearly with ini-
tial tangential velocity. Microscopic inspection of the surfaces of
the target cap and spherical striker subsequent to experimental
data collection indicated that slight fretting wear had occurred
during the experiments, which meant that the value of the friction
coefficient was dependent on the order in which the data were
collected. As such, each set of initial velocity data had its own
velocity-dependent friction model. Using these friction models,
the horizontal tangential force waveforms were normalized, and
the trends in the normalized tangential force waveforms with in-
cidence angle are shown to be very consistent among the three
data sets. These normalized force waveforms are also consistent
with previous continuum model simulations, with the exception of
the apparent friction envelope violation that occurs toward the end
of impact. Also, the trends in both the rebound angle and the
impulse ratio with incidence angle are consistent with previous
results.
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Shakedown Fatigue Limits for
Materials With Minute Porosity
The intention of this study is to predict the fatigue-safe long life behavior of elastoplastic
porous materials subjected to zero-tension fluctuating load. It is assumed that the mate-
rials contain a dilute amount of voids (less than 5%) and obey Gurson’s model of plastic
yielding. The question to be answered is what would be the highest allowable stress
amplitude that a porous material can endure (the “endurance limit”) when undergoing
an infinite number of loading/unloading cycles. To reach the answer we employ the two
shakedown theorems: (a) Melan’s static shakedown theorem (“elastic shakedown”) for
establishing the lower bound to fatigue limit and (b) Koiter’s kinematic shakedown theo-
rem (“plastic shakedown”) for establishing its upper bound. The two bounds are formu-
lated rigorously but solved with some numerical assistance, mainly due to the nonlinear
pressure dependency of the material behavior and the complex description of the plastic
flow near stress-free voids. Both bounds (“dual bounds”) are adjusted to capture Gurson-
like porous materials with noninteractive voids. General residual stresses (either real or
virtual) are presented in the analysis. They are assumed to be time-independent as gen-
erated, say, by permanent temperature gradient between void surfaces and remote mate-
rial boundaries. Such a situation is common, for instance, in ordinary porous sleeves
(used in space industry and alike). A few experiments agree satisfactorily with the shake-
down bounding concept. �DOI: 10.1115/1.3005961�

Keywords: endurance limit, cyclic loading, porous material, residual stress, shakedown
theorems

1 Introduction
The common scattered experimental data in measuring fatigue

limit of most structural materials �such as steel, copper, aluminum
alloys, etc.� are relatively large. It is reported to be ordinarily
about 20% around an average value in �apparent� void-free mate-
rials. When the materials contain dilute amount of voids �about
5% or less, as in sintered materials�, the scatter is even wider.
Engineeringwise there is a clear need to assess in advance the
long term fatigue behavior of such metals �in particular, the al-
lowable stress amplitude�, at their various porosity levels, in order
to avoid premature failure. The shakedown bounds, illustrated in
Fig. 1, are destined to handle this assessment by lower and upper
bounds �applying Melan’s �1� and Koiter’s �2� theorems, respec-
tively�. The procedure of doing so is the subject of this paper.

Among numerous kinds of fatigue failures, the consideration
given here faces only failures associated with overaccumulation of
plastic strain �“ratcheting”� in elastic–perfectly-plastic porous ma-
terials. Other failure modes are excluded.

Applications of the bounding theorems �1,2� are already de-
scribed in several areas: in mechanical sciences by Polizzotto
�3,4�, Druyanov and Romman �5,6�, Ponter and Engelhardt �7�,
and Tirosh and Peles �8,9�. In tribology sciences they are used by
Kapoor and Williams �10� and Wong et al. �11� as a partial list. In
fibrous composite they are used mainly by Dvorak and Tarn �12�,
Jansson and Leckie �13�, and others �i.e., Ref. �14��. In pressure
vessels and thermomechanical structures they are used by Ponter
and Karadeniz �15,16�, Xue et al. �17�, and more. In damage
mechanics they are used by Huang and Stein �18,19�, Belouchrani
and Weichert �20�, and recently also in manufacturing sciences
�21�. In practice, the above dual bounds to porous materials have
not been studied hitherto, besides partially in a recent trial solu-
tion under the framework of two-phase materials �9�.

One reason for this missing analysis could be the apparent lack
of an admissible solution for residual stress field, which �accord-
ing to Melan’s proof �1�� defers plastic strain accumulation. The
second reason is possibly the mathematical complexity arises
from the nonunique kinematics of the plastic flow in nonharden-
ing materials, particularly near existing voids. Under some ideali-
zations �to be discussed� the application of fatigue shakedown
theorems is described in due detail for elastic-perfectly-plastic
materials, which contain dilute amount of porosity.

2 The Static Shakedown
The static shakedown theorem, proved by Melan �1�, states that

a given structure will shake down under prescribed fluctuating
load if one can find an admissible, time-independent, residual
stress field, �ij

�res��xi�, such that when it is superimposed on the
unbounded elastic stress field, �ij

�e��xi , t�, the expression of their
sum �1� never exceeds yielding Eq. �2�.

�ij
�sum� � ��ij

�e��xi,t� + �ij
�res��xi�� �1�

It means that along a loading path with a given time-period T̂

�0� t� T̂�, the shakedown phenomena assure that the material
will eventually respond elastically, namely,

���ij
�sum��xi,t�� � �0 �2�

where the function � �. . .� is a known yield function of the mate-
rial and �0 is its yielding stress in unidirectional loading.

When considering � �. . .� to present von Mises yield criterion,
the so-called “shakedown condition” is generated by using Eq. �2�
with its equality sign. It reads

� = 1
2 ���rr

�sum� − ���
�sum��2� + ����

�sum� − ���
�sum��2 + ����

�sum� − �rr
�sum��2

+ 3��r�
�sum��2 = �0

2 �3�

For porous materials, however, the yield function � �. . .� is pref-
erably considered by Gurson’s yield criterion �22� akin to materi-
als with dilute amount of pores.
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Define f as the volume fraction of the voids in the material. It is
postulated that such a material can reach local yielding �shown
later to originate along the stress-free boundary of the pores� by
certain macrostresses �ij

�sum� applied on the solid, or identically, on
a representative unit-cell of the solid, having a single centered
pore that is “smeared” across the cell to denote the macroproperty
f of the solid �and consequently implies that the associated
stresses in the solid are macrostresses�. Under such yielding,
Gurson’s approximate yield function (in an upper-bound sense
�22�� reads

�3/2�sij
�sum�sij

�sum�

�0
+ 2q1f cosh�q2

�kk
�sum�

�0
	 = �1 + q3f2� �4�

where sij is defined by sij =�ij −
1
3�ij�kk. The summation conven-

tion for repeated subscripts has been employed.
The arbitrary scalars �q1, q2, and q3� in Eq. �4� are chosen

sometimes as 1.5, 1.1, and 2.25, in order to match more closely
the experimental data suggested by Tvergaard �23,24�. In the
limit, when the material porosity approaches zero, Eq. �4� coin-
cides with von Mises criterion �3�.

In the coming analysis, the material porosity is considered per-
manently low, so that the deviation between Eqs. �3� and �4� for,
say, f =0.03, is relatively small �nearly 2%�. Even though, in order
to maintain generality, Eq. �4� rather than Eq. �3� is used in the
oncoming analysis.

2.1 Applications of Melan’s Static Lower Bound. The
“beauty” of Melan’s shakedown theorem �1� is that the actual
elastoplastic solution, �ij�xi , t�, does not have to be determined a
priori. Instead, it is replaced with an unbounded elastic solution,
�ij

�e��xi , t�, having the same geometry and subjected to the same
boundary conditions as the actual problem. Such solutions are
already given in classical papers �i.e., Southwell and Gough in
1926 �25��. They will be used in the sequel.

3 Elastic Solution

3.1 The Stress Field Around a Spherical Void in a Mate-
rial Subjected to Unidirectional Loading. Consider a spherical
void �25� with radius r0 �shear modulus �0=0 and Poisson ratio
	0=0� embedded in an infinite elastic solid �with properties � and
	, respectively�. A remote alternating stress with amplitude �
 is
prescribed on the porous solid as shown in Fig. 2�a�. The associ-
ated stress distribution �plotted in Fig. 2�b�� is

�rr
�e� = �

sin2 � +

1

14 − 10	

1

�3�− 38 + 10	 + 24
1

�2

+ �50 − 10	 − 36
1

�2	cos2 �� �5a�

���
�e� = �

cos2 � +

1

14 − 10	

1

�3�9 – 15	 − 12
1

�2

− �5 – 10	 − 21
1

�2	cos2 �� �5b�

���
�e� =

�


14 − 10	
·

1

�3
9 – 15	 − 12
1

�2 − 15�1 – 2	 −
1

�2	cos2 �
�5c�

�r�
�e� =

�


2
sin 2�
1 +

1

14 − 10	
·

1

�3�10�1 + 	� − 24
1

�2�
�5d�

where ���r /r0��1.

3.2 Residual Stress Distribution. The elastic shakedown
theorem relies on a pre-existence of some residual stress field in
the solid. There is no specific requirement that the field should be
real, albeit it should be physically admissible �namely, to satisfy
the elastic govern equations with homogenous boundary condi-
tions�. Consequently, one is allowed to choose entirely fictitious
fields. Consider, for example, a permanent temperature drop, T,
between the void-free surface and an ambient temperature at far
distance, as occurred, for example, in sleeve bearings made of
porous metals �usually copper� used frequently in space machin-
eries. The temperature gradient is assumed to be sustained in a
steady state condition and thus provides a source for an admissible
thermal residual stress, the magnitude of which is p=�ET / �1
−	� �where E is the Young modulus and � is its coefficient of
linear thermal expansion of the matrix material�.

The residual stress for such a radially symmetric case near a
void of radius r0 is

�rr
�res��r� = − p�1

�
−

1

�3	
���

�res��r� = −
1

2
p�1

�
+

1

�3	 for � � �r/r0� � 1

���
�res��r� = −

1

2
p�1

�
+

1

�3	 �6�

The above distribution �solved in Appendix A� is plotted in Fig. 3.
It is noted that if the magnitude of the residual stress, p, is

sufficiently high, plastic yielding may occur even before prescrib-
ing the actual fatigue loading. By solving Eq. �6� �drawn in Fig. 3�
it becomes clear that p should be restricted to a certain maximum
magnitude, say, pmax, since Melan’s shakedown theorem �1� is

∆σ∞
Plastic shakedown
(upper bound)

Elastic shakedown
(lower bound)

Number of cycles,

Fatigue failure

N

Fatigue limit
(endurance limit)

107

Fig. 1 Schematic illustration of shakedown bounds to fatigue limit „endur-
ance limit….
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applicable until the appearance of “the first yield point” in the
otherwise elastic state of the solid. In order to limit the magnitude
of the residual stress, pmax, the search for the first yield point is
done by using distribution �6� in yield function �4� while setting
�ij

�e�=0. The end-result is

3pmax
2

�0
2 + 2q1f cosh�q2pmax

�0
	 = 1 + q3f2 �7�

�plotted in Fig. 4� showing a decay of pmax with the increase in the
material porosity.

Further assumptions are given as follows:

�a� The material properties are unaffected by changes �if
any� in the material temperature.

�b� The porous material is idealized as a net of uniform cells.
Each one �refers to as “a unit-cell,” described in Appen-
dix B� contains a single void whose volume fraction in

the cell simulates the average volume fraction of the
overall material. The conjugate variables �stress, strain,
etc.� then implied their macro-expression.

�c� Each cell is presumed to behave under loading as the
overall porous material would.

�d� The void volume of the cell remains constant �to stay
consistent with Gurson’s yielding model �22��.

4 The Static Shakedown Condition
By inserting Eqs. �5a�–�5d� and Eq. �6� into Eq. �4� one gets the

yield function of the loaded material as

�

2

�0
2�Y��,�,

p

�


,q1,q2,q3, f	� = 1

or
rθ

ϕ
x

y

z

( )t∞σ

T

t

σ∞∆

( )t∞σ

( )t∞σ

r

θ

r

1 2 3
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o

rr
σ
σ

oσ
σ θθ

oσ
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o

r

σ
σ θ

ρ

ρ ρ

ρ

0
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90

0

0, 90

6090

0

(a)

(b)

Fig. 2 „a… A view of typical material with voids subjected to unidirectional
cyclic loading. „b… Elastic stress distribution around a spherical void caused
by remote unidirectional traction ��. The various curves are the radial dis-
tributions around the void at various angles „the zero angle is collinear with
the load direction….
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for � � 10 and � � � 2� �8a�

where the short-hand expression Y in Eq. �8a� is

Y = 
 �3/2�sij
�sum�sij

�sum�

�1 + q3f2� − 2q1f cosh�q2�kk
�sum�/2�0�

1

�

2  �8b�

In order to find the location of the first yield point at which the
material will yield under the prescribe fluctuating load, one need
to maximize Eq. �8b� with respect to the void coordinates ��, �� in
the unit-cell. This operation is described in a symbolic-convenient
form in Eq. �9�. The associated graphical results are the ellipselike
curves shown in Fig. 5

min
�


�0

=
1

max�Y��,�,
p

�


,q1,q2,q3, f	�1/2
�9�

The contours of the ellipses present the static shakedown con-
dition �namely, Melan’s �1� lower bound for ratcheting-free load-
ing�. The area enclosed by the ellipses represents the domain of
fatigue-safe stress amplitudes at the corresponding residual stress
at various porosity contents.

5 The Kinematic Shakedown

5.1 The Theorem. Koiter �2� proved in 1960 that a structure
will shakedown under cyclic loading if the rate of plastic dissipa-
tion �and the associated frictional loss, if exists� exceeds the sum
of the work rates of the applied traction and the body force Xi.

This inequality reads �within a time period T̂�

�
0

T̂

dt��
V

�ij�̇ijdV� ��
0

T̂

dt��
V

XiuidV + �
ST

Tiuids�
�10�

The strain rate components �̇ij in Eq. �10� are distributed �on a
microlevel� around a spherical pore located in the center of each
unit-cell, and are derived from the trial plastic flow-field ui �to be
devised later�. The conjugate stress components �ij are therefore
microstresses inside the cell.

The energy-rate volume integral over the unit-cell �the left side
of Eq. �10�� renders its overall dissipation rate, and thus turns the
centered pore to an average cell-porosity f �or equivalently, a
“homogenized” property f of the overall solid as well�. By doing
so, the emerged stresses are implied to be the macrostress of the
continuous porous solid, akin to Koiter’s theorem for continua �2�.

In Eq. �10�, Ti�t� is the fluctuating traction on portion ST of the
remote surface, S. The term on the left-hand side represents the
plastic dissipation rate in the deformable volume V, considered as
the sum of, say, N similar cells �as in Appendix B�. In the particu-
lar case of a nonhardening porous material, the constitutive rela-
tion based on the normality and convexity of Gurson’s macros-
tress yield function �22� is

�̇ij = �
sij + �ij
k0q1q2f

�3
sinh�q2�m� �11�

where the plastic coefficient � in Eq. �11� was shown to be �ibid.�

� =
�I2

k0
�1 + q3f2 − 2q1f cosh�q2�m� + �f2q1

2q2
2/2�sinh2�q2�m�

�12�

1 1.5 2 2.5 3
-0.5

0

0.5

1 1.5 2 2.5 3
-1

0

1

1 1.5 2 2.5 3
-1

0

1

p
rrσ

p
θθσ

p
φφσ

ρ

Fig. 3 An admissible residual stress distribution along the ra-
dial distance �=r /r0 „solved by Eq. „6…… normalized with its
magnitude p „p=�E�T / „1−�……

Fig. 4 The restricted permissible magnitude of the residual
stress, pmax, versus the porosity level of the solid as solved by
Eq. „7…

Fig. 5 The loci of Melan’s †1‡ elastic shakedown conditions
„the limit load for ratcheting-free material response at a given
void fraction f…. The area inside each ellipse is the domain of
fatigue-safe stress amplitudes.
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sij = �ij −
1

3
�ij�kk, k0 =

�0

�3
, I2 =�1

2
�̇ij�̇ij �13�

5.2 The Dissipative Energy Rates. As mentioned, the plastic
deformation work rate in porous materials is expressed as

Ẇ =�
V

�ij�̇ijdV =�
V

�sij�̇ij + �1/3��kk�̇ii�dV �14�

The first term in the integral of Eq. �14� corresponds to the
classical plastic dissipation rate while the second term denotes the
dilatational work rate. The first term of Eq. �14� reads

�
V

sij�̇ijdV = 2k0�
V

�1 + q3f2 − 2q1f cosh�q2�m���I2

�1 + q3f2 − 2q1f cosh�q2�m� + �fq1q2/�2�2 sinh2�q2�m�
dV �15a�

and the second term of Eq. �14� leads to

�
V

�1/3��kk�̇iidV = 2k0�
V

�mq1q2f sinh�q2�m��I2

�1 + q3f2 − 2q1f cosh�q2�m� + �fq1q2/�2�2 sinh2�q2�m�
dV �15b�

Equation �10� can now be rewritten in the following form:

�
0

T

dt��
Vm

XiuidV +�
Su+ST

Ti�t�uids�
��

0

T

dt��
V

�sij�̇ij + 1/3�kk�̇ii�dV� �16�

where the “body force” Xi is defined here as the force “density”
�force/volume� generated by the residual stress field that sur-
rounds each cavity. It renders the following:

Xi =
�ij

�res�nj · 4�r2

4
3�r3

=
3�ij

�res�nj

r
�17�

where ni is an outward unit vector on an arbitrary sphere of radius
r, for r�r0, and the force density is the overall tractions on the
sphere surface per its volume.

Equation �17� is a reminder of the ordinary notion of body force
in the sense that it manifests an internal source of energy-rate
when forced to be displaced by ui. After inserting solution �6� in
Eq. �17� one gets its components as

Xr = −
3p

r0
� 1

�2 −
1

�4	, X� = −
3

2

p

r0
� 1

�2 +
1

�4	
X� = −

3

2

p

r0
� 1

�2 +
1

�4	 �18�

Since this artificial body force is highly concentrated near each
cavity, the work-rate contribution for dilute porosity stays rela-
tively small �about 5% less than otherwise�. A complete harmonic
cycle of the traction leads to zero work-rate contribution �due to
internal work-rate cancellation� but a complete harmonic cycle is
not always guaranteed during fluctuating fatigue loads. Conse-
quently, we are attempting here to preserve the duality of the
bounds by including the effect of the residual stresses in both
bounds.

6 The Plastic Flow Field
The deformation field in nonhardening plasticity of metals is

not unique, though the stress field is unique. Hence there are an
infinite number of velocity fields that obey incompressibility,
compatibility, and pertinent boundary conditions. A finite number
of these fields can be combined to form a general approximate
field, leaving several undetermined parameters to be determined
by satisfying certain boundary conditions and �in certain cases� a

minimal dissipative energy-rate. A procedure to do so was sug-
gested by Rice and Tracey �26�. We will use herewith their results.

6.1 A Smooth Plastic Flow (as Opposed to Flows With
Rigid Zones). The stream function ��r ,� , t�, which describes a
smooth admissible flow-field �22,26� around a spherical void due
to a remote strain, �̇ �in vertical direction as seen in Fig. 6�, was
found to be

� =
1

8
��3 − 8D + 4E − 3

E

�2	r0
3�̇ cos���

+
1

8
�3

E

�2 − 4E − �3	r0
3�̇ cos�3�� �19�

where the unknown coefficients D and E are

D = 0.283e3�m

/2�0

E � − 0.00087 · D3 + 0.0066 · D2 + 0.052 · D + 0.496 �20�
The stream lines based on function �19� is plotted in Fig. 6.
Based on the definition relating velocity flow-field with a given

stream function ��r ,� , t�,

u� = −
1

r sin �

��

�r
, ur =

1

r2 sin �

��

��
�21�

one gets from Eq. �19� the following flow-field:

Fig. 6 Stream lines of smooth plastic flow around a spherical
void in a structure subjected to unidirectional remote load „in
vertical direction…
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ur = �3

4
� + 3

E

�2 −
9

4

E

�4	r0�̇ cos�2�� + � E

�2 +
�

4
+

D

�2 −
3

4

E

�4	�̇r0

�22�

u� =
1

4
�− 3� − 6

E

�4	r0�̇ sin�2�� �23�

The associated strain rate components, using

�̇ij = 1/2�ui,j + uj,i� �24�

give

�̇rr =
�ur

�r
= �9

E

�5 − 6
E

�3 +
3

4
	�̇ cos�2�� + �1

4
− 2

D

�3 + 3
E

�5 − 2
E

�3	�̇

�25a�

�̇�� =
1

r

�u�

��
+

ur

r
= �3

E

�3 −
21

4

E

�5 −
3

4
	�̇ cos�2��

+ � E

�3 +
1

4
+

D

�3 −
3

4

E

�5	�̇ �25b�

�̇�� =
ur

r
+ u�

cot���
r

= �−
3

4
−

6E

4�5	�̇ cot���sin�2��

+ �3

4
+ 3

E

�3 −
9

4

E

�5	�̇ cos�2�� + � E

�3 +
1

4
+

D

�3 −
3

4

E

�5	�̇

�25c�

�̇r� =
1

2
� �u�

�r
−

u�

r
+

1

r

�ur

��
	 =

3

4
�̇ sin�2���8

E

�5 − 4
E

�3 − 1	
�25d�

where �=r /r0.

6.2 Calculating Energy Rates. The traction work rate is
given as

� Tiuids =�
ST

�ijnjuids =�
V

��ijui� jdv =�
V

�ijui,jdv

=�
V

��xx�̇xx + �yy�̇yy + �zz�̇zz + 2��xy�̇xy + �xz�̇xz

+ �zy�̇zy��dv �26a�

The work rate of the body force is calculated in the following
manner:

Ẇb =�
V

�Xrur + X�u��dV =�
�=0

2� �
�=0

� �
r=r0

r0n

�Xrur

+ X�u��r2 sin �drd�d� �26b�

The process of getting the upper-bound solution in terms of the
variables �
 and p is an algebraic evaluation of the terms in Eq.
�10� given by Eqs. �11�–�14�, �15a�, �15b�, �16�–�24�, �25a�–
�25d�, �26a�, and �26b�. The result is plotted in Fig. 7.

The final description of the dual shakedown bounds �elastic and
plastic� is plotted in Figs. 8�a� and 8�b� along with few experi-
mental data taken from Sanderow et al. �27� and Katsushi et al.
�28�. The data were generated by rotating-bending fatigue of steel
structures made by sintered powder. The materials so produced
have different amounts of porosities as measured by relative over-
all densities. The sintered materials could have included residual
stress �from any reason� though not indicated in the data. There-
fore, for demonstrating the possible effect of the residual stress on
the shakedown bounds, we arbitrarily assumed extreme cases: The

magnitude of the residual stress in the material is either zero �Fig.
8�a�� or p= �0.3�0 �Fig. 8�b��.

The collection of the whole experimental data, which appear in
Figs. 8�a� and 8�b� �as extracted from Sanderow et al. �27� and
Katsushi et al. �28��, is summarized, for convenience, in Appendix
C.

7 Discussion
The dual shakedown theorems provide a rough predictive tool

for the highest allowable stress amplitude before ratcheting
erupted. The beauty of the analysis stems from the fact that there
is no need to postulate specific mechanisms by which the material
fails, besides the common belief that it is associated with accumu-
lation of plastic straining �ratcheting�. Both shakedown bounds
are destined to find the maximum stress amplitude, which holds
more than N=107 cycles without signaling plastic accumulation.

Some specific conclusions are given as follows.

�1� Qualitatively, residual stress �whether real or imaginary�
affects the computational assessment of the fatigue limit. In
its presence, as seen in Fig. 5, the elastic shakedown indi-
cates higher fatigue limit than in its absence for negative
sign of p. In its presence at the plastic shakedown solution,
as seen in Fig. 7, the residual stress always leads to a lower
upper-bound of the fatigue limit �due to its symmetry effect
with respect to the ordinary fatigue limit at p=0�. Figures
8�a� and 8�b� intend to comprehend quantitatively both
bounds with experiments �29�.

�2� It is believed that initial void growth is retarded under com-
pressive residual stress �and accelerated in tensile ones�.
This feature is conceptually “responsible” for the elastic
shakedown of porous materials, as characterized in Fig. 5.
More physical ground to such conclusion can be found in
Chap. 13 of Ref. �30�.

�3� The porosity content influences moderately the fatigue be-
havior. The endurance limit is always decreasing when the
porosity content is increasing.

�4� In actual manufacturing processes it was evidenced that
wrought, forged, and cast materials are commonly left with
some amount of voids �usually less than 3%� to which the
suggested dual bounds are applicable. Also, certain steel
alloys contain “soft” particles and can be categorized as
porous materials �31�. Therefore, the suggested assessment
of ratchet-free loading seems to have a wide use.

Fig. 7 The plastic shakedown condition „the equality sign of
Eq. „10…… for a safe fluctuating stress in materials with porosity
fractions of f=0.01, f=0.05, and f=0.1
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�5� Admittedly, the dual bounds shown in this work are still
relatively far from each other �e.g., Figs. 8�a� and 8�b�� for
a reliable decision about the permissible fatigue stress am-
plitudes. Engineeringwise a smaller gap between the
bounds is certainly desired, but presently no other
experimental-free alternative is offered to assess such con-
ditions in porous materials.
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Appendix A: Residual Stress Distribution Around a
Spherical Void

We visualize here a case of a temperature drop, T �which is
denoted as T in the text�, between the center of the cavity and its
surrounding. Due to the radial symmetry there will be only three
nonzero stress components: the radial component �rr, and two
tangential components ���=���. They are inter-related by a single
equilibrium equation in the radial direction, namely,

d�rr

dr
+

2

r
��rr − ���� = 0 �A1�

The stress strain relations in the presence of a temperature drop
are as follows:

�̇rr − �T =
1

E
��rr − 2	���� �A2�

�̇�� − �T =
1

E
���� − 	��rr + ����� �A3�

If ur is the radial velocity, we get the strain rate components as

�̇rr =
dur

dr
, �̇�� =

ur

r
�A4�

By substituting Eqs. �A2�–�A4� in Eq. �A1� we find the equi-
librium equation in terms of the single variable u as

d

dr

 1

r2

d

dr
�r2ur� =

1 + 	

1 − 	
�

dT

dr
�A5�

whose solution is

ur =
1 + 	

1 − 	
�

1

r2�
a

r

Tr2 dr + C1r +
C2

r2 �A6�

By conversion to stresses, Eq. �A6� becomes

�rr = −
2�E

1 − 	

1

r3�
a

r

Tr2 dr +
EC1

1 – 2	
−

2EC2

1 + 	

1

r3 �A7�

�� =
�E

1 − 	

1

r3�
a

r

Tr2 dr +
EC1

1 – 2	
−

EC2

1 + 	

1

r3 −
�ET

1 − 	
�A8�

Denote a and b as the inner and outer radii of the stress-free
void and remote boundary, namely,

�rr�r = b� = 0, �rr�r = a� = 0 �A9�

and assume that

T�r = a� = Ta, T�r = b� = 0

The integration constants C1 and C2 in Eqs. �A7� and �A8� are
recovered, so that

�rr =
2�E

1 − 	
 r3 − a3

�b3 − a3�r3�
a

b

Tr2 dr −
1

r3�
a

r

Tr2 dr �A10�

��� =
2�E

1 − 	
 2r3 + a3

2�b3 − a3�r3�
a

b

Tr2 dr +
1

2r3 +�
a

r

Tr2 dr −
1

2
T
�A11�

Consider, as an example, a cavitated material with steady heat
flow. We denote the temperature at the inner surface by Ta and the
temperature at the outer surface as zero. Then the temperature at
any radial distance from the void center is

T =
Taa

b − a
�b

r
− 1	 �A12�

Substituting Eq. �A12� in Eqs. �A10� and �A11� we find

�rr =
�ET

1 − 	

ab

b3 − a3
a + b −
1

r
�b2 + ab + a2� +

a2b2

r3  �A13�

��� =
�ET

1 − 	

ab

b3 − a3
a + b −
1

2r
�b2 + ab + a2� −

a2b2

2r3 
�A14�
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Fig. 8 „a… Dual bounds for the ordinary porous materials „with
zero residual stresses…. The experimental data are from
Sanderow et al. †27‡ and Katsushi et al. †28‡. „b… Dual shake-
down bounds for porous materials with a prescribed amount of
residual stresses of magnitude p= ±0.3�0. The experimental
data are taken from Sanderow et al. †27‡ and Katsushi et al.
†28‡.
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Define p as the magnitude of the residual stress �see details in the text�, then the residual stresses at infinitely large material �b
→
� are

�rr
�res� = p · lim

b→


 �a/b�2 + �a/b� − �1/r� · �a + �a2/b� + �a3/b2�� + �a3/r3�

1 − �a/b�3  = −
pa

r

1 − �a

r
	2 �A15�

���
�res� = p · lim

b→


 �a/b�2 + �a/b� − �1/2r� · �a + �a2/b� + �a3/b2�� − �a3/2r3�

1 − �a/b�3  = −
pa

2r

1 + �a

r
	2 �A16�

���
�res� = −

pa

2r

1 + �a

r
	2 �A17�

Let a in Eqs. �A15�–�A17� be r0 �as in the text� and let r be
normalized by r0, then Eq. �6� in the text is obtained.

Appendix B: The Porous Material Model
The porous material is modeled as a doubly periodic array of

spherical �stress-free� voids. The half length of the unit-cell, x0, is
shown in terms of the porosity content f �see Fig. 9�.

Appendix C: Collection of Fatigue Data
Table 1 was taken from Sanderow et al. �27� and Katsushi et al.

�28�.
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Compression of Viscoplastic
Material Between Rotating Plates
An analysis is conducted of the two-dimensional flow of Bingham solids between two
rotating plates. The maximum friction law is adopted at the plate surface. An asymptotic
analysis of the solution is performed in the vicinity of the friction surface. Its results are
used in a numerical procedure to obtain an accurate approximation of the solution near
the friction surface. The through thickness distribution of velocities, the equivalent strain
rate, and stresses is illustrated. Qualitative features of the solution are emphasized. The
results are compared with the solution for rate-independent materials.
�DOI: 10.1115/1.3005962�

1 Introduction
There are a number of rigid perfectly/plastic solutions obtained

by inverse methods �see Refs. �1–3� among others�. The mono-
graph �1� also includes earlier solutions proposed by Prandtl and
Nadai. In the case of problems with frictional interfaces, the fric-
tion law postulating that the friction stress at sliding is equal to a
portion of the shear yield stress is usually adopted. A particular
case of this friction law is the maximum friction law �the friction
stress is equal to the shear yield stress�. The maximum friction
law is of special interest because the corresponding friction stress
at sliding is higher or equal to the friction stress following from
any other possible friction laws. Also, rigid perfectly/plastic solu-
tions are singular in the vicinity of maximum friction surfaces �4�.
Many of the aforementioned rigid perfectly/plastic solutions have
been generalized on other rate-independent plasticity models, for
instance Refs. �5–9�, where the double-shearing model proposed
in Ref. �10� was adopted. These solutions are singular in the vi-
cinity of maximum friction surfaces as well. However, attempts to
generalize the rigid perfectly/plastic solutions on rate-dependent
materials are not completely successful. It is convenient to divide
such materials into two groups: viscoplastic fluids �the yield stress
vanishes at zero strain rate� and viscoplasic solids �the yield stress
is of a finite value at zero strain rate� �11�. In the present paper,
viscoplastic solids only are considered. It is possible to verify by
inspection that the solution for the compression of a viscoplastic
layer between parallel plates proposed in Ref. �12� is not valid in
the case of the maximum friction law and predicts unrealistic
results if the friction stress is less than the maximum friction
stress but is still high enough. The solution for axisymmetric vis-
coplastic flow through infinite conical channels proposed in Ref.
�13� does not satisfy the friction boundary conditions. Approxi-
mate solutions to the same and other similar problems found in
Refs. �14,15� are valid at very small friction stresses only. A de-
tailed discussion of plane-strain flows through wedge-shaped
channels, including both converging and diverging flows, is pro-
vided in Ref. �16� where special attention is devoted to the quali-
tative behavior of the solutions, and difficulties similar to those
appearing in the axisymmetric solutions are mentioned. One of the
reasons for such difficulties with obtaining viscoplastic solutions
of the class considered is that the velocity fields in the aforemen-
tioned solutions found by inverse methods require the regime of
sliding at the friction surface whereas the general theory predicts
the regime of sticking at maximum friction surfaces �17�. In the
present paper, compression of a viscoplastic layer between rotat-
ing plates is studied, and it is shown that the problem permits a

solution at the regime of sticking. As in the case of other plastic
solutions obtained by inverse methods �for example Refs.
�1–3,5,6,12,13��, the process is not feasible for practical realiza-
tion. Therefore, it seems that the major significance of the solution
and its potential applications lie in the area of numerical simula-
tion of problems whose solutions cannot be found in a closed
form. The qualitative behavior of the solution emphasized in the
present paper shows that expressions like 0/0 can appear in the
vicinity of maximum friction surfaces. Comparison made with the
solution obtained in Ref. �8� for rate-independent materials dem-
onstrates that the qualitative behavior of the solution depends on
the material model chosen and that the solution may be singular.
Asymptotic behavior of solutions and, in particular, the singularity
enrichment functions are used in such finite element formulations
as the extended finite element method �XFEM� �18�. Therefore, it
is of importance to know the asymptotic behavior of solutions
near certain lines or surfaces in advance.

2 Statement of the Problem
Consider the plane-strain deformation of a viscoplastic material

between two plates rotating around a common axis with an angu-
lar velocity � �Fig. 1�. It is convenient to introduce a cylindrical
coordinate system r�z with its z-axis being perpendicular to the
plane of flow. Also, the z-axis coincides with the axis of rotation
of the plates. The flow is symmetric with respect to the axis �
=0. It is therefore sufficient to obtain the solution in the region
0����, where � is the orientation of the plate surface �Fig. 1�.
Since the material is history-independent, it is sufficient to obtain
the instantaneous solution, i.e., � is an arbitrary fixed constant. It
is assumed that there is no material flux at r=0. A conventional
system of equations for the quasistatic plane-strain deformation of
a viscoplastic material consists of the following equilibrium equa-
tions:

��rr

�r
+

1

r

��r�

��
+

�rr − ���

r
= 0,

1

r

����

��
+

��r�

�r
+

2�r�

r
= 0

�1�

the yield criterion,

��rr − ����2 + 4�r�
2 = 4k2 �2�

and its associated flow rule,

�rr = ���rr − ��, ��� = ����� − ��, �r� = ��r� �3�

Here �rr, ���, and �r� are the components of the stress tensor in
the cylindrical coordinates, �rr, ���, and �r� are the components of
the strain rate tensor in the cylindrical coordinates, � is a non-
negative multiplier, � is the hydrostatic stress defined by
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� =
�rr + ���

2
�4�

and k is a prescribed function of the equivalent strain rate �eq
defined by

�eq =�2

3
��rr

2 + ���
2 + 2�r�

2 �5�

The physical meaning of k is the shear yield stress at any given
value of �eq. By assumption, dk /d�eq�0 at any value of �eq and
k=k0�0 at �eq=0, where k0 is the initial shear yield stress. The
incompressibility equation in the form �rr+���=0 immediately
follows from Eqs. �3� and �4�. The strain rate components are
expressed in terms of the velocity components, ur and u�, as

�rr =
�ur

�r
, ��� =

1

r

�u�

��
+

ur

r
, �r� =

1

2
�1

r

�ur

��
+

�u�

�r
−

u�

r
�

�6�
The yield criterion �2� is satisfied by the standard substitution

�rr = � + k cos 2	, ��� = � − k cos 2	, �r� = − k sin 2	

�7�

The geometry of the process assumes that ����0 and, therefore,
the incompressibility equation gives �rr
0. Hence, �rr−���
0
and it follows from Eq. �3� that �rr−���
0. Also, the direction of
the friction stress �Fig. 1� requires that �r��0. Using these in-
equalities it is possible to conclude from Eq. �7� that

0 � 	 �
�

4
�8�

Combining Eqs. �3� and �7� and excluding � Eq. �3� can be trans-
formed into

�rr + ��� = 0, ��� = �r� cot 2	 �9�
Substituting Eq. �9� into Eq. �5� and taking into account Eq. �8�
gives

�eq = −
2
�3

���

cos 2	
�10�

The stress boundary condition at the axis of symmetry is �r�
=0. Using Eqs. �7� and �8� this condition can be rewritten in the
form

	 = 0 �11�

at �=0. The velocity boundary condition at the axis of symmetry
is

u� = 0 �12�

at �=0. One of the boundary conditions at the plate surface has
the form

u� = − �r �13�

at �=�. The other boundary condition at this surface depends on
the friction law. Here the maximum friction law is adopted. In
general, its mathematical formulation is

ur = 0 at � f � k

� f = k otherwise �14�

The first part of this law corresponds to the regime of sticking and
the second part to the regime of sliding. However, it has been
shown in Ref. �17� that the regime of sliding never occurs if k
→ as �eq→. In what follows such constitutive equations only
are adopted. Therefore, Eq. �14� transforms into

ur = 0 �15�

at �=�.

3 Velocity Equations
A typical assumption accepted in many classical rigid plastic

solutions is that 	 is independent of one of the coordinates. In the
case under consideration it is reasonable to suppose that 	 is
independent of r. The velocity filed is assumed to be in the form

ur = −
�r

2

df

d�
and u� = �rf��� �16�

where f��� is an arbitrary function of �. This velocity field pre-
dicts no material flux at r=0. With the use of Eq. �6�, it is possible
to verify by inspection that the first equation of system �9� is
satisfied at any choice of f���. The second equation of this system
reduces to

dF

d�
+ 2F tan 2	 = 0 �17�

where

df

d�
= F �18�

Equation �17� is compatible with the assumptions made since 	 is
independent of r. In terms of the new functions, boundary condi-
tions �12�, �13�, and �15� become

f = 0 �19�

at �=0,

f = − 1 �20�

at �=�, and

F = 0 �21�

at �=�. With the use of Eqs. �16� and �18� expression �10� for the
equivalent strain rate transforms into

�eq = −
�

�3

F

cos 2	
�22�

A Bingham solid is defined by

k = k0 + k0
�eq

�0
, �0 = constant �23�

The quantity �0 can be regarded as a characteristic strain rate.
Substituting Eq. �22� into Eq. �23� gives

k

k0
= 1 −

wF

cos 2	
, w =

�

�3�0

�24�

Fig. 1 Geometry of the process
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4 Stress Equations
Equation �24� and the assumptions made show that k is inde-

pendent of r. Therefore, as follows from Eq. �7�, the shear stress
�r� is independent of r. Hence, using Eq. �7� equilibrium equa-
tions �1� can be transformed into

r
��

�r
−

d�k sin 2	�
d�

+ 2k cos 2	 = 0,

��

��
−

d�k cos 2	�
d�

− 2k sin 2	 = 0 �25�

The first equation of this system can be integrated to give

� = �d�k sin 2	�
d�

− 2k cos 2		ln� r

R
� + k0�0��� �26�

Here R is an arbitrary constant and �0��� is an arbitrary function
of �. It can be seen from the second equation of system �25� and
�26� that the system is compatible if and only if

d�k sin 2	�
d�

− 2k cos 2	 = 2k0A �27�

where A is constant. In this case Eq. �26� can be rewritten in the
form

�

k0
= 2A ln� r

R
� + �0��� �28�

Substituting Eq. �28� into the second equation of system �25�
leads to

k0
d�0

d�
=

d�k cos 2	�
d�

+ 2k sin 2	 �29�

Since the arbitrary constant R has already been introduced in Eq.
�26�, it is possible to assume with no loss of generality that the
boundary condition to Eq. �29� is

�0 = 0 �30�

at �=�.

5 Solution
There are four equations to solve, Eqs. �17�, �18�, �27�, and

�29�. Equation �29� can be solved independently after the solution
to the other equations has been found. It is convenient to consider
	 as the independent variable. Then, F, f , and � are functions of 	
to be determined from Eqs. �17�, �18�, and �27�. In Eq. �27� the
derivative d /d� can be replaced with �d /dF��dF /d�� and k can be
excluded with the use of Eq. �24�. Then, excluding dF /d� by
means of Eq. �17� gives

dF

d	
=

2F tan 2	�cos3 2	 − wF�
wF − cos3 2	 − A cos2 2	

�31�

Equations �17� and �18� can be transformed in a similar manner to
give

d�

d	
=

wF − cos3 2	

wF − cos3 2	 − A cos2 2	
�32�

and

df

d	
=

�wF − cos3 2	�F
wF − cos3 2	 − A cos2 2	

�33�

Assume that 	�� /4 at �=�. Since F=0 at �=�, as follows
from Eq. �21�, Eq. �31� in the vicinity of �=� is represented in the
form dF /d	=CF where C is constant. Its general solution is
ln F=C	+C0 with C0 being a constant of integration. Obviously,
this solution cannot satisfy boundary condition �21� at any value
of C0. It is therefore necessary to assume that

	 =
�

4
�34�

at �=�. In this case the right hand side of Eqs. �31�–�33�, reduces
to 0/0 at �=� �or 	=� /4�. It is possible to verify by substitution
that the solution to Eq. �31� has the form

F = B��

4
− 	� + o��

4
− 	�, 	 →

�

4
�35�

where B is an arbitrary constant. As follows from Eq. �34�, solu-
tion �35� satisfies boundary condition �21�. Using Eq. �35� and
expanding the numerator and denominator in Eqs. �32� and �33� in
a series in the vicinity of 	=� /4 gives after integration

� = � − ��

4
− 	� + o��

4
− 	�, 	 →

�

4
�36�

f = − 1 −
B

2
��

4
− 	�2

+ o���

4
− 	�2	, 	 →

�

4
�37�

The constants of integration were chosen to satisfy boundary con-
ditions �20� and �34�. Retaining terms up to O�� /4−	� in Eqs.
�35� and �36� and up to O��� /4−	�2� in Eq. �37� it is possible to
find the value of F=Fc, �=�c, and f = fc at 	=	c where 	c
=� /4−� and ��1. Obviously, the values of Fc and fc depend on
B.

In the interval 0�	�	c the solution to Eqs. �31�–�33� should
be found numerically with the use of Fc, �c, and fc as the bound-
ary conditions at 	=	c. The two constants, A and B, should be
determined by means of boundary conditions �11� and �19�.

In Eq. �29�, the derivatives d /d� can be replaced with �d /d	�
��d	 /d�� where d	 /d� should be excluded by means of Eq.
�32�. Then, integrating with the use of boundary condition �30�
and taking into account condition �34� gives

�0 = cos 2	 − wF + 2

�/4

	 �sin 2	 − wF tan 2	��wF − cos3 2	�
�wF − cos3 2	 − A cos2 2	�

d	

�38�

Since the solution to Eqs. �31�–�33� determines F�	�, A, and B,
integration in Eq. �38� can be performed numerically with no
difficulty, though the numerator and denominator of the integrand
in Eq. �38� should be expanded in a series in the vicinity of 	
=� /4 to find the asymptotic behavior of �0 near the friction sur-
face. As a result,

�0 = −
4A

Bw
��

4
− 	�2

+ o���

4
− 	�2	, 	 →

�

4
�39�

Then, the stress tensor is determined by Eq. �7� with the use of
Eqs. �24� and �28�.

Substituting Eq. �35� into Eq. �22� gives

�eq

�0
= −

wB

2
+ o�1�, 	 →

�

4
�40�

It is also of interest to find the asymptotic behavior of the deriva-
tive of the equivalent strain rate with respect to � in the vicinity of
the friction surface. To this end, it is necessary to calculate the
term of order O��� /4−	�2� in the asymptotic expansion of F.
Assume that

F = B��

4
− 	� + B1��

4
− 	�2

+ o���

4
− 	�2	, 	 →

�

4

�41�

Substituting this expansion into Eq. �31� and equating coefficients
of like powers of �� /4−	� to zero yields B1=4A /w. Then, sub-
stituting Eq. �41� into Eq. �22� and differentiating with respect to
	 gives
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d��eq/�0�
d	

=
2A

w
+ o�1�, 	 →

�

4
�42�

Taking into account Eq. �36�, Eq. �42� can be rewritten in the form

d��eq/�0�
d�

=
2A

w
+ o�1�, � → � �43�

6 Special Case
A special case is obtained at A=0. In particular, Eqs. �31�–�33�

reduce to

dF

d	
= − 2F tan 2	,

d�

d	
= 1,

df

d	
= F �44�

The solution to these equations satisfying boundary conditions
�11�, �19�, and �20� is

F = −
2 cos 2	

sin 2�
, � = 	, f = −

sin 2	

sin 2�
�45�

As follows from this solution boundary condition �21� is satisfied
if and only if �=� /4. Then, Eq. �45� becomes

F = − 2 cos 2�, f = − sin 2� �46�

Also, substituting Eq. �45� at �=� /4 into Eq. �22� it is possible to
find

�eq = 2w�0 �47�

Thus �eq and k are constant in the entire plastic zone. Therefore,
Eq. �29� can be immediately integrated with the use of boundary
condition �30� to get �0=0 in the entire plastic zone. However,
Eq. �28� should be replaced with �=constant because R cannot
serve as a constant of integration in this special case. Then, the
distribution of stress components is determined by Eq. �7�, where
	 can be replaced with � due to Eq. �45�.

Since the condition A=0 corresponds to �=� /4, it is reason-
able to expect that the sense of A is opposite at ��� /4 and �
�� /4.

7 Numerical Results and Discussion
All calculations illustrated in Figs. 2–8 were performed at w

=1 and �=0.001. The definition for � is given after Eq. �37�. The
dependence of A and B introduced in Eqs. �27� and �35� on the
value of � is depicted in Fig. 2. It is seen that B is always negative
whereas A changes its sense at �=� /4 such that it is negative at
��� /4 and positive at ��� /4. Then, it follows from Eq. �43�
that the equivalent strain rate is an increasing function of � in the
vicinity of the friction surface at ��� /4 and is a decreasing
function of � at ��� /4. Also, Eq. �28� demonstrates that at any
fixed value of R the contact pressure becomes negative for suffi-

ciently small r-values at ��� /4 and for sufficiently large
r-values at ��� /4. It contradicts the friction law because one of
its requirements is that the pressure is positive. However, it is a
common defect of many solutions of this class. A typical example
is the flow of a plastic material through infinite wedge-shaped and

Fig. 2 Variation of A and B with angle �

Fig. 3 Variation of the radial velocity with the polar angle at
different values of �

Fig. 4 Variation of the circumferential velocity with the polar
angle at different values of � „1–�=10 deg, 2–�
=20 deg, 3–�=30 deg, 4–�=40 deg, 5–�=45 deg, 6–�
=70 deg…

Fig. 5 Variation of the equivalent strain rate with the polar
angle at different values of �
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axisymmetric channels �1,2�. Also, the value of R can be chosen
such that the positive pressure occurs on any finite portion of the
friction surface. The stress and velocity fields were calculated for
several �-values, including the special case corresponding to �
=� /4. The solution is illustrated in Figs. 3–8 where the special

case is shown by dashed lines. The asymptotic expansions found
in Eqs. �35�–�37�, �39�, and �42� were used to obtain an accurate
representation of the solution in the vicinity of the friction surface.
The variation of the velocity components with angle � is depicted
in Figs. 3 and 4 at different �-values. The dependence of the
equivalent strain rate on � is shown in Fig. 5. It is seen that for
�-angles smaller than � /4 the equivalent strain rate is a mono-
tonically increasing function of � in the entire plastic zone, i.e.,
the equivalent strain rate is higher in the vicinity of the friction
surface than at the center of flow. The tendency is opposite for
�-angles larger than � /4. It is interesting to note here that solu-
tions of rate-independent plasticity predict a rigid zone in the vi-
cinity of the friction surface at sufficiently large �-angles �larger
than � /4 for pressure-independent rigid perfectly plastic material�
�8�. This result cannot be extended to the model under consider-
ation. Assume that such a solution exists at ��� /4 and that the
rigid plastic boundary is given by the equation �=� /4. Then, Eq.
�47� shows that �eq�0 and, therefore, k�k0 on the plastic side of
the rigid plastic boundary. On the other hand, k=k0 in the rigid
zone. Hence, the shear stress cannot have the same value of the
two sides of the rigid plastic boundary, which contradicts the equi-
librium equations.

The normal stresses cannot be completely calculated since R
remains undetermined. Therefore, for the illustration of the
through thickness distribution of these stresses it is convenient to
introduce the quantities prr=�rr+ p and p��=���+ p, where p is
the pressure on the friction surface, i.e., p is equal to −��� calcu-
lated at �=� �or 	=� /4�. The variation of prr, p��, and the shear
stress �r� is shown in Figs. 6–8 at different �-values. It is inter-
esting to mention that the distribution of the shear stress has a
maximum within the plastic zone at 	�� /4. The maximum co-
incides with the frictional interface at 	=� /4.

The average pressure at the friction surface defined as

pa

k0
= − R−1


0

R
���

k0
dr �48�

is independent of R. It follows from Eq. �7� that ���=� at 	
=� /4 �or �=��. Therefore, substituting Eq. �28�, with the use of
Eq. �30�, into Eq. �48� and integrating gives

pa/k0 = 2A �49�

Since A depends on w, this equation illustrates a strain rate effect.
Based on the aforementioned numerical procedure, the variation
of A with � was calculated for several values of w and, then, Eq.
�49� was used to find the average pressure �Fig. 9�. The material
flux through the surface r=R is determined from the incompress-
ibility equation as q=�R2 /2. Since the domain r�R was consid-

Fig. 6 Variation of prr value with the polar angle at different
values of �

Fig. 7 Variation of p�� value with the polar angle at different
values of �

Fig. 8 Variation of the shear stress with the polar angle at
different values of �

Fig. 9 Variation of the average pressure with angle � at differ-
ent values of w
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ered in Eq. �48�, a physically meaningful result is obtained at �
�� /4 and, moreover, possible applications of this result are re-
stricted to rather small angles of �. It is somehow similar to the
restriction that the thickness of the layer should be much smaller
that its width in the famous problem of compression of the plastic
layer between parallel plates �Prandtl problem� �1�. The depen-
dence of pa on w is in agreement with physical expectations,
higher values of w result in greater pressure.

A boundary layer theory for Bingham solids was proposed in
Ref. �19�. In general, it predicts a very high velocity gradient in
the vicinity of maximum friction surfaces. For the geometry con-
sidered it is equivalent to a high magnitude of the derivative of the
radial velocity with respect to the polar angle. However, the solu-
tion found develops no boundary layer. It is seen in Fig. 3 and is
obvious in the case of a very simple solution given in Sec. 6. A
possible reason for this disagreement between the general theory
and the exact analytic solution is that the latter has no character-
istic length.

8 Conclusions
An analytic solution for viscoplastic flow between rotating

plates was found. It was shown that an asymptotic analysis of the
equations is necessary for obtaining an accurate representation of
the solution in the vicinity of the plate surface where the maxi-
mum friction law is adopted. This finding may be of importance
for developing numerical codes for problems of practical interest.
An interesting feature of the solution is that the distribution of the
equivalent strain rate is uniform at �=� /4. This fact can be prob-
ably used in the experiment on determining parameters of the
model. In particular, compression at ��� /4 should provide more
reasonable results because the inhomogeneity in the distribution
of the equivalent strain rate is rather small. It is also of interest
that no rigid zone appears in the material, though such a zone
occurs in the solution to the same problem in the case of rate-
independent materials �8�, and rigid zones often occur in other
viscoplastic solutions, for example, Refs. �20,21�. In the case of a
rigid perfectly/plastic material the rigid zone appears at the fric-
tion surface at ��� /4. In the present solution, the qualitative
behavior of the equivalent strain rate changes at �=� /4 �Fig. 5�.
In particular, the equivalent strain rate attains its minimum value
at the friction surface at ��� /4 and its maximum value at �
�� /4. Note that in the rigid perfectly/plastic solution �eq=0 in
the rigid zone �i.e., in the vicinity of the friction surface at �
�� /4� and �eq→ as �→� at ��� /4. As compared with
squeeze flows studied in Refs. �20,21�, the formulation of the
present problem is quite different because there is no point on the
friction surface where the friction stress vanishes, which, in fact,
is the reason for the occurrence of rigid zones in the aforemen-
tioned studies.

The present study is intentionally restricted to the friction
boundary condition in the form of the maximum friction law. It is
motivated by the fact that most of available viscoplastic solutions
obtained by inverse methods are not valid if the maximum friction
law is adopted, for instance Refs. �12,13�. Therefore, the present
solution contains a distinguished qualitative effect. It is interesting
to note that the situation is quite different for viscoplastic fluids.
In this case there are solutions to boundary value problems incor-
porating the maximum friction law �22�. Those were also found
by an inverse method.

In spite of a possibility to adopt the present solution for the
problem of compression of a finite block of material between
rotating plates, by means of typical arguments used to apply exact
and approximate plastic solutions found by inverse methods to
material forming problems �see, for example Refs. �1� and �2��,
the primary objective of this study is to provide the exact visco-
plastic solution satisfying the maximum friction law. It is believed
that the solution can serve as a benchmark problem for verifying
numerical codes since accurate closed form solutions are neces-
sary for this purpose �23�.
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Although it is known that correct dynamical equations of motion
for a nonholonomic system cannot be obtained from a
Lagrangean that has been augmented with a sum of the nonholo-
nomic constraint equations weighted with multipliers, previous
publications suggest otherwise. One published example that was
proposed in support of augmentation purportedly demonstrates
that an accepted method fails to produce correct equations of
motion whereas augmentation leads to correct equations. This
present paper shows that, in fact, the opposite is true. The correct
equations, previously discounted on the basis of a flawed applica-
tion of the Newton–Euler method, are verified by using Kane’s
method together with a new approach for determining the direc-
tions of constraint forces. �DOI: 10.1115/1.3086435�
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1 Introduction
Dealing with nonholonomic constraint equations within the

framework of variational methods is a controversial subject. For
example, Ray �1� modified Hamilton’s principle and augmented
the Lagrangean by adjoining a sum of nonholonomic constraint
equations weighted with multipliers. Later, Ray �2� reversed him-
self. In the erratum he compared the correct way of dealing with
constraint equations that are linear in the time derivatives of the
generalized coordinates to the incorrect approach of augmenting
the Lagrangean that gives the wrong results, even when the con-
straint equations are linear. Saletan and Cromer �3� followed Ray
and showed that the augmented Lagrangean gives correct equa-
tions of motion when the constraint equations are holonomic.
They concluded that no such augmented Lagrangean exists in the
nonholonomic case, in part, because they said that there is no way
to determine initial conditions needed for the integration of differ-
ential equations governing the multipliers. Rosenberg �4� pre-
sented the same demonstration as Ray’s erratum and concluded
that although Hamilton’s principle may be regarded as a varia-
tional principle for conservative holonomic systems, it cannot be
so regarded for nonholonomic systems. In an effort to eliminate

constraint violations, Rosen and Edelstein �5� made a proposal
similar to that of Ray 30 years earlier; they account for nonlinear
nonholonomic constraint equations in the same way that they do
holonomic constraint equations. Hagedorn �6� pointed out that
although their approach is justified in the holonomic case, it is
incorrect for nonholonomic constraint equations, even when they
are linear. He demonstrated this with an example and gave the
well-known result for the correct way to handle linear equations,
which does not come from modifying the Lagrangean. According
to Hagedorn the mistake has been repeated many times over the
past century and the pitfall has received attention in Refs. �7–9�.
More recently, Flannery �10� examined the problems encountered
by Ray and others and, after in-depth analysis, concluded “Gen-
eral �nonlinear� nonholonomic constraints are completely outside
the scope of even the most fundamental principle of D’Alembert.
The generalization of any principle based on �D’Alembert’s� to
general nonholonomic constraints is without foundation.”

Rosen and Edelstein �6� offered a counterexample purportedly
showing that Hagedorn’s approach leads to incorrect results. Their
conclusion, however, is based on a flawed application of the
Newton–Euler method. The objectives of the present paper are to
demonstrate the validity of Hagedorn’s approach and bring to
light mistakes made by Rosen and Edelstein in the development of
their counterexample.

2 Identification of Constraint Forces
Suppose that a mechanical system S is made up of � particles

P1 , . . . , P�. In the event S is subject to configuration constraints,
its configuration in a Newtonian reference frame N can be de-
scribed by generalized coordinates q1 , . . . ,qn, and the motion of S
is characterized by motion variables u1 , . . . ,un �also called gener-
alized speeds �11��. If, in addition, S is a simple nonholonomic
system �11�, the motion constraints imposed on S are described
with nonintegrable relationships that are linear in u1 , . . . ,un. Sup-
pose further that the configuration constraints and motion con-
straints can be described at the velocity level by a total of m
independent equations of the form

�
i=1

�

NvPi · Wis + Ys = 0 �s = 1, . . . ,m� �1�

where NvPi is the velocity of Pi in N, Wis are vector functions in
N of q1 , . . . ,qn and the time t, and Ys are scalar functions of the
same variables. According to Ref. �12�, one can inspect these
relationships and conclude that constraint forces are given by

Cis = �sWis �i = 1, . . . ,�; s = 1, . . . ,m� �2�

where �s are scalar multipliers. The constraint force Cis is evi-
dently parallel to Wis and in general it must be applied to Pi in
order to satisfy the constraint equation having the form of Eqs.
�1�. The technique of inspecting Eqs. �1� and writing Eqs. �2� is a
way of systematically establishing the direction and point of ap-
plication of each constraint force.

3 Problems With the Counterexample
The planar system featured in the counterexample proposed by

Rosen and Edelstein �6� is shown in Fig. 1. Two perpendicular
unit vectors n̂1 and n̂2 are fixed in an inertial reference frame N. A

smooth rod B whose axis is parallel to unit vector b̂1 is inclined at
a constant angle � to n̂1; B is permitted to translate along an axis
parallel to n̂2. A particle P of mass m moves along B, and the
mass of B is negligible in comparison to m. It is said that no forces
are exerted on P other than those necessary to prevent it from
losing contact with B.

Analysis is facilitated by working with two generalized coordi-
nates q1 and q2 shown in Fig. 1, where q1 is the displacement in a
prismatic joint connecting B to N, and where q2 is the displace-
ment of P along the rod. Two motion variables are introduced
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simply as ur= q̇r �r=1,2�. A motion constraint is to be imposed
upon the velocity of P in B, expressed by the relationship

� cos �u2 − q1 = 0 �3�

where � is a positive constant. The equivalence of this expression
and the constraint equation in Ref. �6� is demonstrated presently.

Now, the velocity NvB̄ in N of every point B̄ fixed in B is given by
NvB̄=u1n̂2, and the velocity BvP of P in B is given by BvP=u2b̂1.

Henceforth, B̄ is taken to be the point of B that is coincident with

P, and the velocity of P in N is simply NvP= NvB̄+ BvP. The non-
holonomic constraint equation �3� can thus be written in vector
form as

�NvP − NvB̄� · b̂1 −
q1

� cos �
= 0 �4�

This relationship has the form of Eqs. �1�. Let the particle P play
the part of P1, and let the particle fixed in B and coincident with

B̄ play the part of P2. With s=1, the vector W11 is identified as b̂1,

whereas the vector W21 is −b̂1. The scalar Y1 is simply
−q1 / �� cos ��. Thus, with Eqs. �1� and �2� in mind, one may
inspect Eq. �4� and conclude that P must be subjected to a con-

straint force C11 that is parallel to b̂1,

C11 = �1b̂1 �5�

whereas a constraint force C21=−C11 is applied to B at B̄. The
scalar multiplier �1 is as yet unknown. In practice, the set of
forces C11 and −C11 could be applied with a motorized gear at-
tached to P moving on a track of gear teeth fixed in B. Alterna-
tively, friction could be exploited by using a capstan and pinch
roller on opposite sides of B in the way a similar mechanism is
used to transport magnetic tape. Evidently the rod cannot be per-
fectly smooth as hypothesized in the problem statement, if the
nonholonomic constraint equation �3� is to be satisfied.

There also exists a configuration constraint that prevents P from

moving in B in the direction of b̂2; at the velocity level, the ho-
lonomic constraint equation is expressed as

�NvP − NvB̄� · b̂2 = 0 �6�

This relationship has the form of Eqs. �1�. As before, P and B̄ play
the roles of P1 and P2. With s=2, the vector W12 is identified as

b̂2, whereas the vector W22 is −b̂2. The scalar Y2 is 0. In view of
Eqs. �1� and �2�, satisfaction of the constraint requires the appli-
cation of a constraint force

C12 = �2b̂2 �7�

to P, and a constraint force C22=−C12 is applied to B at B̄. �In
Ref. �6�, the unknown multiplier �2 is denoted by N.� This result
is clearly in line with physical reasoning; in order to satisfy Eq.
�6� and keep P from losing contact with the rod, a constraint force

of unknown magnitude and parallel to b̂2 must be applied to P. In
view of the law of action and reaction, a force of equal magnitude

and opposite direction must be applied to B at B̄.
Now that the constraint forces C11 and C12 to be applied to P

have been identified, together with the constraint forces C21 and

C22 applied to B at B̄, one is in a position to use Kane’s method
�11� to form two equations of motion Fr+Fr

�=0 �r=1,2� for the
system S composed of P and B. The holonomic generalized active
forces Fr are given by

Fr = Nvr
P · �C11 + C12� + Nvr

B̄ · �− C11 − C12� �r = 1,2� �8�

The holonomic generalized inertia forces Fr
� are constructed ac-

cording to

Fr
� = − Nvr

P · m NaP �r = 1,2� �9�

One may inspect the relationships NvB̄=u1n̂2 and NvP=u1n̂2

+u2b̂1 to identify the holonomic partial velocities required by Eqs.
�8� and �9�.

Nv1
P = n̂2, Nv2

P = b̂1, Nv1
B̄ = n̂2, Nv2

B̄ = 0 �10�

The acceleration of P in N is easily formed as NaP= u̇1n̂2+ u̇2b̂1.

�The time derivative of b̂1 in N vanishes because B has no angular
velocity in N.� Hence, the dynamical equations of motion for S in
N are found to be

m�u̇1 + sin �u̇2� = 0 �11�

m�sin �u̇1 + u̇2� = �1 �12�

The nonholonomic constraint force C11 contributes to the holo-
nomic generalized active forces, whereas the holonomic constraint
force C12 does not. A third equation is needed to solve for the
three unknowns u̇1, u̇2, and �1; it is provided by the nonholo-
nomic constraint equation �3� expressed at the acceleration level
in scalar form as

u̇2 −
u1

� cos �
= 0 �13�

Analytical solutions are then available:

u̇1 = −
tan �

�
u1 �14�

u̇2 =
u1

� cos �
�15�

�1 =
m cos �

�
u1 �16�

In the paragraph that precedes Eq. �16� �6�, Rosen and Edelstein
�6� stated that P has zero acceleration along the path �the rod�. It
is worth noting that Eqs. �5�, �15�, and �16� together contradict
this statement. If the proposed nonholonomic constraint equation
is to be satisfied, u̇2 is in general nonzero; it vanishes only in the
special case when the rod is stationary �u1=0�.

The differential equations �14� and �15� yield closed-form so-
lutions for u1 and u2; these can in turn be used to obtain closed-

q2

n̂2

n̂1

b̂2
b̂1

q1

B

N

®

P

Fig. 1 A particle moving on a sliding inclined rod
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form solutions for the generalized coordinates from the two kine-
matical differential equations q̇r=ur �r=1,2�. As shown in Ref.
�12�, these solutions verify the results attributed in Ref. �6� to
Hagedorn’s approach, namely, Eqs. �12� and �14a� in Sec. 3 of that
work. Furthermore, the second-order differential equations �11a�
and �11b� ascribed to Hagedorn’s approach can be recovered from
Eqs. �14�–�16� here. Such demonstrations are facilitated by estab-
lishing the following relationships between the Cartesian coordi-
nates x and y and the generalized coordinates q1 and q2:

x = cos �q2, ẋ = cos �u2, ẍ = cos �u̇2 �17�

y = q1 + sin �q2, ẏ = u1 + sin �u2, ÿ = u̇1 + sin �u̇2 �18�
Moreover, appropriate substitution from these relationships shows
that the original form of the nonholonomic constraint equation
given in Ref. �6�, y−x tan �−�ẋ=0, gives way to Eq. �3�.

Rosen and Edelstein �6� rejected the aforementioned differential
equations for x and y, and the closed-form solutions, on the basis
of their results obtained with the Newton–Euler method. With the
analysis already performed here, it is evident that their application
of the method is flawed, and the point in their development where
the mistake was made can be identified immediately. In their Eqs.
�2a� and �2b�, they did not account for a constraint force C11
needed to ensure satisfaction of their nonholonomic constraint
equation; they only considered C12 required to bring about the
configuration constraint.

4 Conclusion
A straightforward application of Kane’s method for simple non-

holonomic systems, together with identification of the constraint

forces needed to impose a motion constraint and a configuration
constraint, are used to verify the results obtained with what was
called the regular variational approach, brought to the reader’s
attention by Hagedorn in Ref. �6�. The conclusions reached by
Hagedorn, Ray, Flannery, and others are thus affirmed; namely,
the Lagrangean cannot be augmented by the sum of nonholo-
nomic constraint equations weighted with multipliers, regardless
of whether or not such equations are linear in the time derivatives
of the generalized coordinates.
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In this paper, a mathematical investigation on the effect of con-
vective cooling on a reactive third-grade fluid flowing steadily
through a cylindrical pipe is performed. It is assumed that the
system exchange heat, with the ambient following Newton’s cool-
ing law and the reaction, is exothermic under Arrhenius kinetics,
neglecting the consumption of the material. The simplified govern-
ing nonlinear equations of momentum and energy are obtained
and solved using a special type of the Hermite–Padé approxima-
tion technique. The important properties of the overall flow struc-
ture including velocity field, temperature field, bifurcations, and
thermal criticality conditions are discussed.
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1 Introduction
It is well known that the rheological properties of many fluids

used in engineering and industries are not well modeled by the
Navier–Stokes equations �1,2�. In recent years, there have been
several studies �3–5� on the mechanics of non-Newtonian fluids,
not only because of their technological significance but also in
view of the interesting mathematical features presented by the
nonlinear equations governing the flow. Furthermore, a large class
of non-Newtonian fluids used in industries is chemically reactive,
e.g., coal slurries, polymer solutions or melts, drilling mud, hy-
drocarbon oils, and grease. For instance, in modeling the non-
Newtonian flow situations, such as coal-based slurries as retrofit
fuels, the power-law model was used widely to characterize the
rheological properties of the fluid �2�. Although the power-law
model adequately fit the shear stress and shear rate measurements
for many non-Newtonian fluids, it could not always be used to
predict accurately the pressure loss data measured during the
transport of a coal-liquid mixture in a fuel delivery system. More-
over, the power-law model could not predict correctly the normal
stress effects that lead to phenomena such as road climbing, in
which case the stresses are developed orthogonal to planes of
shear. Consequently, a third-grade fluid model is fruitful and ap-
propriate for this situation �6�. Meanwhile, the study of heat trans-
fer and thermal criticality of reactive non-Newtonian fluids is ex-
tremely important in order to ensure safety of life and properties
during handling and processing of such fluids �7–9�. Massoudi
and Christie �10� studied the flow of a variable viscosity third-
grade fluid and heat transfer in a pipe. They showed numerically
that increasing non-Newtonian parameter lowered the temperature
and velocity of the fluid in the pipe. Szeri and Rajagopal �11�

studied the flow of non-Newtonian fluid between two heated hori-
zontal parallel plates. They employed the third-grade fluid model
and introduced temperature dependent viscosity.

The task of this present work is to study the effect of convective
cooling on a non-Newtonian reactive flow in a cylindrical pipe
using a special type of Hermite–Padé approximants. This is basi-
cally an extension of the recent work of Makinde �4� to include
the effect of convective heat exchange with the ambient at the
pipe surface. The mathematical formulation of the problem is es-
tablished and solved in Secs. 2 and 3. In Sec. 4, we introduce and
apply some rudiments of the Hermite–Padé approximation tech-
nique. Both numerical and graphical results are presented and
discussed quantitatively with respect to various parameters em-
bedded in the system in Sec. 5.

2 Analysis
The geometry of the problem is as shown in Fig. 1 below. The

non-Newtonian reactive steady flow is induced by applied axial
pressure gradient with convective cooling at the pipe surface. A
cylindrical coordinate system �r ,z� is chosen such that 0z lies
along the axis of pipe; r is the distance measured radially with r
=a as the pipe radius. Following Refs. �3,5,10� and neglecting the
reacting viscous fluid consumption, the governing equations for
the momentum and heat balance can be written as

�

r

d

dr
�r

du

dr
� +

�3

r

d

dr
�r�du

dr
�3� =

dP

dz
�1�

k

r

d

dr
�r

dT

dr
� + �du

dr
�2�� + �3�du

dr
�2� + QC0Ae−E/RT = 0 �2�

The appropriate boundary conditions are given as follows: the
pipe surface is fixed, impermeable, and exchange heat with the
ambient following Newton’s cooling law,

u = 0, k
dT

dr
= − h�T − Ta� at r = a �3�

and the axisymmetric conditions along the centerline, i.e.,

du

dr
=

dT

dr
= 0 at r = 0 �4�

where the additional Arrhenius kinetics term in energy balance
equation �2� is due to Refs. �7,12�. Here T is the fluid temperature,
u is the fluid velocity, U is the fluid characteristic velocity, h is the
heat transfer coefficient, Ta is the ambient temperature, k is the
thermal conductivity of the material, Q is the heat of reaction, A is
the rate constant, E is the activation energy, R is the universal gas
constant, C0 is the initial concentration of the reactant species, �3
is the material coefficient, P is the modified pressure, and � is the
fluid dynamic viscosity coefficient �7,8,11�. We introduce the fol-
lowing dimensionless variables into Eqs. �1�–�3�:

� =
E�T − Ta�

RTa
2 , r̄ =

r

a
, � =

QEAa2C0e−E/RTa

Ta
2Rk

,

W =
u

UG
, Bi =

ha

k

m =
�G2U2eE/RTa

QAa2C0
, � =

RTa

E
, G = −

a2

�U

dP

dz
, � =

�3U2G2

a2�

�5�
and obtain the dimensionless governing equations together with
their corresponding boundary conditions as �neglecting the bar
symbol for clarity�

1

r

d

dr
�r

dW

dr
� +

�

r

d

dr
�r�dW

dr
�3� = − 1 �6�
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1

r

d

dr
�r

d�

dr
� + ��e��/�1+���� + m�dW

dr
�2�1 + ��dW

dr
�2�� = 0

�7�
with

W = 0,
d�

dr
= − Bi� at r = 1 �8�

dW

dr
=

d�

dr
= 0 at r = 0 �9�

where �, �, �, m, and Bi represent the Frank-Kamenetskii param-
eter, the activation energy parameter, the dimensionless non-
Newtonian parameter, the viscous heating parameter, and the Biot
number, respectively. In Sec. 3, Eqs. �6�–�9� are solved using both
perturbation and multivariate series summation techniques
�4,13,14�.

3 Perturbation Method
Equations �6�–�9� are nonlinear, and it is convenient to form a

power series expansion both in the dimensionless non-Newtonian
parameter � and the Frank-Kamenetskii parameter �, i.e.,

W = 	
i=0

�

Wi�
i, � = 	

i=0

�

�i�
i �10�

Substituting the solution series in Eq. �10� into Eqs. �6�–�9� and
collecting the coefficients of like powers of � and �, we obtained
and solved the equations for the coefficients of solution series
iteratively. Using a computer symbolic algebra package �MAPLE�,
the first few terms of the above solution series in Eq. �10� can be
easily obtained �see the Appendix�. The physical quantities of in-
terest in this problem are the skin-friction parameter �Cf� and the
Nusselt number �Nu�, which are defined by

Cf =
a�w

�UG
=

dW

dr
�1� �11a�

Nu =
aEqw

kRTa
2 = −

d�

dr
�1� �11b�

where �w=�du /dr and qw=−kdT /dr are the shear stress and the
heat flux evaluated at the wall �i.e., r=a�, respectively. We are
aware that the power series solutions are valid for very small
parameter values. However, using the Hermite–Padé approxima-
tion technique, we have extended the usability of the solution
series beyond small parameter values, as illustrated in Sec. 4.

4 Thermal Criticality and Bifurcation Study
The determination of thermal criticality in a flow system is

extremely important from the application point of view. Thermal
criticality occurs when the rate of heat generation within the flow
system exceeds the heat dissipation to the surroundings
�4,11,13,14�. This condition is incipient thermal runaway or igni-
tion in the flow system �3,12�. Thermal criticality is characterized

by the onset of thermal instability in the system and the nonexist-
ence of a steady-state solution to nonlinear problems for certain
parameter values �6�. A primary objective of thermal criticality
analysis is the prediction of the critical or unsafe flow conditions
in order to avoid them �8�. The main tool employed in this section
is a simple technique of series summation based on the generali-
zation of the Hermite–Padé approximants and may be described
as follows. Let us suppose that the partial sum

UN��� = 	
n=0

N

an�n + O��N+1� as � → 0 �12�

is given. It is important to note here that Eq. �12� can be used to
approximate any output of the solution of the problem under in-
vestigation �e.g., the series for the wall heat flux parameter in
terms of Nusselt number Nu=−d� /dr at r=1� since everything
can be Taylor expanded in the given small parameter. Assuming
that UN��� in Eq. �12� is a local representation of an algebraic
function of � in the context of nonlinear problems, we seek a
polynomial

Fd��,UN� = 	
m=1

d

	
k=0

m

fm−k,k�
m−kUN

k �13�

of degree d	2, such that

�Fd

�UN
�0,0� = 1 �14�

and

Fd��,UN� = O��N+1� as � → 0 �15�

Condition �13�, which yields f0,1=1, ensures that the polynomial
Fd has only one root, which vanishes at �=0 and also normalizes
Fd. The requirement �Eq. �14�� reduces the problem to a system of
N linear equations for the unknown coefficients of Fd. The entries
of the underlying matrix depend on the N given coefficients of
UN. Henceforth we shall take

N = 1
2 �d2 + 3d + 2� �16�

so that the number of equations equals the number of unknowns.
The polynomial Fd is a special type of Hermite–Padé approximant
and is then investigated for bifurcation and criticality conditions
��c� numerically using the Newton diagram �15�. The critical
value ��c� is obtained as the nearest singularity in the system and
is tabulated in Sec. 5.

5 Results and Discussion
The bifurcation procedure in Sec. 4 was applied to the first few

terms of the solution series, and we obtained the results as shown
in Tables 1 and 2 and Figs. 2–6. Table 1 demonstrates the rapid
convergence of our procedure with respect to the non-Newtonian
parameter ��c� dominant singularity and its critical exponent �bc�
for a third-grade fluid flowing steadily in a cylindrical pipe. A
bifurcation point �i.e., a turning point� occurs in the flow field at
��c ,Cf�= �−16 /27,−3 /4�, as shown in Fig. 6. It is noteworthy that
the convergence of our procedure improves with gradual increase
in the number of series coefficients utilized in the approximants.

Fig. 1 Geometry of the problem

Table 1 Computations showing the procedure rapid conver-
gence and bifurcation point in the velocity field

d N Cf �c

1 9 
0.750095 
0.592617
2 12 
0.750000 
0.592592
3 15 
0.750000 
0.592592
4 18 
0.750000 
0.592592
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Table 2 shows the thermal criticality conditions ��c� for a reac-
tive third-grade liquid with respect to pipe flow. The magnitude of
thermal criticality increases, while the rate of heat transfer across
the wall decreases with an increase in the value of the Biot num-
ber and the non-Newtonian parameter ���. This implies that in-
creasing values of the non-Newtonian parameter and the intensity
of convective cooling enhance the thermal stability of a reactive
third-grade liquid. The results for the case of Bi→� also agreed
perfectly well with the one reported in Ref. �4�. The fluid velocity
profile is parabolic, as shown in Fig. 2; however, a gradual de-
crease in the magnitude of fluid velocity is noticed with an in-
crease in value of the non-Newtonian parameter. Figure 3 shows a
transverse increase in the fluid temperature with the maximum
temperature along the pipe centerline. An increase in the value of
the Frank-Kamenetskii parameter ��� due to Arrhenius kinetics
causes a further increase in the fluid temperature, while a decrease
in fluid temperature is observed with an increase in the convective

cooling, as shown in Fig. 4. A slice of the bifurcation diagram for
Bi�0 in the �� ,Nu� plane is shown in Fig. 5. It represents the
variation in wall heat flux �Nu� with the Frank-Kamenetskii pa-
rameter ���. In particular, for every 0���0.1 there is a critical
value �c �a turning point� such that for 0���c there are two
solution branches �labeled I and II�. The upper and lower solution
branches occur due to Arrhenius kinetics in the governing thermal
boundary layer equation �Eq. �2��. The system has no real solution
for �c� and displays a classical form, indicating thermal run-
away. The magnitude of �c increases with a decrease in the fluid
activation energy ��=0.1�, hence preventing the early develop-
ment of thermal runaway and enhancing thermal stability.

6 Conclusion
A novel hybrid numerical-analytical scheme based on a special

type of Hermite–Padé approximants is utilized to investigate the
effect of convective cooling on the thermal criticality of a reactive
third-grade fluid flowing steadily through a cylindrical pipe. The

Table 2 Computations showing thermal criticality conditions for different parameter values

Bi m � Nu ��=0� �c �e=0� Nu ��=0.1� �c ��=0.1�

0.1 1.0 0.1 0.101721745 0.06874448290 0.129969293 0.077293512
1.0 1.0 0.1 0.797386716 0.55307475391 1.021737269 0.622721247

10.0 1.0 0.1 1.892518128 1.60254039226 2.431123409 1.817184246
100 1.0 0.1 2.086597414 1.90674915118 2.659917357 2.163012837

� 1.0 0.1 4.217362228 1.94607136100 5.369541143 2.20747552
� 1.0 0.2 4.212964486 1.94675509035 5.364098368 2.20816105
� 1.0 0.3 4.208225870 1.94748243186 5.358240483 2.20889033

Fig. 2 Velocity profile: ______, �=0; oooooo, �=0.4; ++ + + +
+, �=0.8

Fig. 3 Temperature profile for Bi=1; m=1; ε=0; �=0.1;
______, �=0.1; ooooo, �=0.2; ++ + ++, �=0.3

Fig. 4 Temperature profile for �=0.1; m=1; ε=0; �=0.1;
______, Bi=1; ooooo, Bi=3; ++ + ++, Bi=5

Fig. 5 A slice of approximate bifurcation diagram in the
„� ,Nu… plane
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procedure reveals accurately the thermal criticality conditions and
various solution branches. It is observed that a combined increase
in convective cooling parameter �Biot number� and non-
Newtonian parameter enhances the thermal stability of a reactive
third-grade fluid.
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Nomenclature
T � fluid temperature
U � characteristic velocity
Ta � ambient temperature
Q � heat of reaction
E � activation energy

C0 � reactant initial concentration
r � radial coordinate

Bi � Biot number
W � dimensionless velocity
u � fluid velocity
h � heat transfer coefficient
k � thermal conductivity coefficient
A � reaction rate constant
R � universal gas constant
P � fluid pressure
z � axial coordinate

m � viscous heating parameter
G � pressure gradient parameter

Greek Symbols
� � dynamic viscosity coefficient

�3 � material coefficient
� � Frank-Kamenetskii parameter
� � activation energy parameter
� � non-Newtonian parameter
� � dimensionless temperature

Appendix
This appendix gives the truncated series solutions to Eqs.

�6�–�9� obtained using MAPLE,

W�r� =
1

4
−

1

4
r2 + � 1

32
r4 −

1

32
�� + �−

1

64
r6 +

1

64
��2

+ � 3

256
r8 −

3

256
��3 + �−

11

1024
r10 +

11

1024
��4

+ � 91

8192
r12 +

91

8192
��5 + O��6�

��r� = −
1

180,633,600
��225m�5r14Bi − 4900m�4r12Bi

+ 42,336m�3r10Bi − 132,300m�2r8Bi − 313,600m�r6Bi

+ 2,822,400mr4Bi + 45,158,400r2Bi − 3150m�5

+ 58,800m�4 − 423,360m�3 + 1,058,400m�2

+ 1,881,600m� − 11,289,600m − 90,316,800 − 225Bim�5

+ 4900Bim�4 − 42,336Bim�3 + 132,300Bim�2

+ 313,600Bim� − 2,822,400Bim − 45,158,400Bi���/Bi

+
1

46,242,201,600
�− 4,300,800Bim�4 + 8,670,412,800Bi

− 2,709,504r2Bi2m�3 + 313,600r2Bi2m�4

− 5,780,275,200r2Bi − 18,816,000Bi2m�

+ 8,467,200r2Bi2m�2 + 225m�5r16Bi2 + 75,264m�3r12Bi2

− 6400m�4r14Bi2 − 338,688m�2r10Bi2 − 1,254,400m�r8Bi2

− 180,633,600r2Bi2m + 31,610,880Bim�3

+ 963,379,200Bim − 240,844,800m� − 135,475,200m�2

+ 54,190,080m�3 − 7,526,400m�4 + 403,200m�5

− 150,528,000Bim� + 14,175Bi2m�5 − 307,200Bi2m�4

+ 20,070,400r2Bi2m� + 226,800Bim�5 + 11,560,550,400

+ 2,167,603,200Bi2 + 160,563,200Bi2m

− 2,890,137,600r2Bi2 + 722,534,400r4Bi2

− 8,128,512Bi2m�2 + 2,634,240Bi2m�3 − 81,285,120Bim�2

+ 20,070,400mr6Bi2 − 722,534,400r2Bim

+ 1,445,068,800m + 3,763,200r2Bim�4

− 27,095,040r2Bim�3 + 67,737,600r2Bim�2

+ 120,422,400r2Bim� − 14,400r2Bi2m�5

− 201,600r2Bim�5��2/Bi2 + O���3
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We propose a new hybrid piezoelectric composite comprised of
armchair single-walled carbon nanotubes and piezoelectric fibers
as reinforcements embedded in a conventional polymer matrix.
Effective piezoelectric and elastic properties of this composite
have been determined by a micromechanical analysis. Values of
the effective piezoelectric coefficient e31 of this composite that
accounts for the in-plane actuation and of effective elastic prop-
erties are found to be significantly higher than those of the exist-
ing 1–3 piezoelectric composites without reinforced with carbon
nanotubes. �DOI: 10.1115/1.3063633�

1 Introduction
The discovery of carbon nanotubes �CNTs� �1� has stimulated

extensive research devoted to the prediction of their elastic prop-
erties through experiments and theoretical modeling. Treacy et al.
�2� experimentally determined that CNTs have Young’s modulus
in the terapascal range. Li and Chou �3� linked structural and
molecular mechanics �MM� approaches to compute elastic prop-
erties of CNTs. Sears and Batra �4� used three MM potentials to
simulate axial and torsional deformations of a CNT assuming that
the tube can be regarded as a hollow cylinder of mean diameter
equal to that of the CNT. They found the wall thickness, Young’s
modulus, and Poisson’s ratio of the CNT. Shen and Li �5� assumed
that a CNT should be modeled as a transversely isotropic material
with the axis of transverse isotropy coincident with the centroidal
axis of the tube. They determined values of the five elastic con-
stants by using a MM potential and an energy equivalence prin-
ciple. Batra and Sears �6� proposed that the axis of transverse
isotropy of a CNT is a radial line rather than the centroidal axis of
the tube and found that Young’s modulus in the radial direction
equals about 1/4 of that in the axial direction. Batra and Gupta
�7,8� determined the wall thickness and material moduli of a CNT
based on the frequencies of axial, torsional, and radial breathing
modes. Wu et al. �9� developed an atomistic based finite deforma-
tion shell theory for single-walled CNT and found its stiffness in
tension, bending, and torsion. A great deal of research has also
been carried out on the prediction of effective elastic properties of
CNT-reinforced composites �10–12�.

Piezoelectric composites, often called piezocomposites, have
been used as distributed actuators and sensors. Piezocomposites
�PZCs�, usually comprised of an epoxy reinforced with a mono-
lithic piezoelectric material �PZT�, provide a wide range of effec-
tive material properties not offered by existing PZTs, are aniso-

tropic, and are characterized by good conformability and strength.
One of the commercially available PZCs is the lamina of verti-
cally reinforced 1–3 PZCs �13� and is being effectively used as
underwater and high frequency ultrasonic transducers, and in
medical imaging devices. In a 1–3 PZC lamina the poling direc-
tion of PZT fibers is along the laminate thickness, and the top and
the bottom surfaces of the lamina are electroded. Smith and Auld
�14� used the micromechanical isostrain/isostress technique to de-
termine the effective moduli of a PZC and found that the magni-
tude of the effective piezoelectric coefficient e33 is much larger
than that of the effective piezoelectric coefficient e31. Note that e33
determines the magnitude of the induced actuating stress along the
fiber direction due to a unit electric field applied across the thick-
ness of the PZC lamina while e31 gives the induced stress in the
direction transverse to the fiber. Hence, the in-plane actuation of
this PZC is negligible as compared with its out-of-plane actuation
�15�. The control of bending deformations of a smart beam is
generally attributed to the in-plane actuation induced by a PZT
actuator. The in-plane actuation caused by the PZC can be en-
hanced by tailoring its effective piezoelectric coefficient e31.
Smith and Auld’s �14� work also reveals that the magnitude of
effective e31 can be increased by improving upon elastic proper-
ties of the matrix. Since CNT reinforcements noticeably
strengthen the polymer matrix, the matrix can also be reinforced
with CNT and PZT fibers to form a new hybrid PZC with im-
proved effective piezoelectric coefficient e31. Here, we find values
of effective moduli of a hybrid PZC that we call nanotube rein-
forced hybrid piezoelectric composite �NRHPC� by using a mi-
cromechanics approach proposed by Smith and Auld �14�, and
Benveniste and Dvorak �16�.

2 Effective Moduli of a NRHPC
Figure 1 shows a schematic sketch of a lamina of NRHPC with

CNT and PZT fibers aligned vertically. The cross section of CNT
and PZT fibers is shown as square for simplicity since it does not
enter into calculations. The analysis applies to straight prismatic
fibers with parallel centroidal axes and fibers perpendicular to the
lamina. The CNT fibers are assumed to be transversely isotropic
with the axis of transverse isotropy along the centroidal axis, and
the PZT fibers are poled in the thickness direction. The represen-
tative volume element considered for the micromechanics analysis
is comprised of a CNT fiber and a PZT fiber surrounded by a
polymer matrix of the same volume fraction as that in the com-
posite. Using rectangular Cartesian coordinate axes exhibited in
Fig. 1, constitutive equations for the PZT, the CNT, and the poly-
mer matrix material are

��p� = �Cp���p� − �ep�Ez, ��n� = �Cn���n�, and

��m� = �Cm���m� �1�

where

��r� = ��x
r �y

r �z
r �yz

r �xz
r �xy

r �T,

��r� = ��x
r �y

r �z
r �yz

r �xz
r �xy

r �T,

�Cr� = �
C11

r C12
r C13

r 0 0 0

C12
r C22

r C23
r 0 0 0

C13
r C23

r C33
r 0 0 0

0 0 0 C44
r 0 0

0 0 0 0 C55
r 0

0 0 0 0 0 C66
r

� ,
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r = p, n, and m; �ep� =	
e31

p

e32
p

e33
p

0

0

0


 �2�

In Eq. �1�, superscripts p, n, and m denote, respectively, the PZT,
the CNT, and the matrix. For the constituent phase r, �x

r, �y
r, and

�z
r represent normal stresses in the x, y, and z, directions, respec-

tively; �x
r, �y

r, and �z
r are the corresponding normal strains; �xy

r ,
�yz

r , and �zx
r are the shear stresses; �xy

r , �yz
r , and �zx

r are the shear
strains; Cij

r �i, j=1,2 ,3 , . . . ,6� are elastic constants; and e31
p and

e33
p are the piezoelectric coefficients of the PZT. A field variable

and a material property without a superscript represent quantities
for the hybrid composite. We assume that all fibers are perfectly
bonded to the matrix, and hence satisfy the following isofield
conditions �14,16�:
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�xz
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 =	
�z

�x

�y

�yz

�xz

�xy


 �3�

As a limitation of the above assumptions, Smith and Auld �14�
mentioned that for applications as transducers, this homogeniza-
tion technique yields good results when the fiber sizes and spac-
ings are sufficiently small as compared with the acoustic wave-
lengths. Since diameters of CNTs are very small they can be
closely packed to make spacing between any two of them much
smaller than the acoustic wavelength. Also, the assumption of
uniform axial strain in the thickness direction in the three phases
is not strictly valid unless the top and the bottom faces are bonded
to rigid membranes and are uniformly pressed in the axial direc-
tion. However, for CNTs and PZTs distributed uniformly with
very little space between them, the assumption gives reasonable
results for applications as actuators of beams and plates.

Following the procedure outlined in Ref. �14�, the normal stress
�z, the normal strains �x and �y, and the shear strains �xz, �yz, and
�xy in the homogenized composite can be expressed in terms of
the corresponding stresses and strains in the constituent phases.
Thus using Eqs. �1� and �3�, we obtain

��� = �C1���p� + �C2���n� + �C3���m� − �e1�Ez �4�

��� = �V1���p� + �V2���n� + �V3���m� �5�

�C4���p� − �C5���n� = �e2�Ez �6�

�C5���n� − �C6���m� = 0 �7�

in which
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C11

p C12
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Fig. 1 Schematic sketch of a NRHPC comprised of a polymer
matrix reinforced with CNT and PZT fibers
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vn 0 0 0 0 0

0 vn 0 0 0 0

0 0 0 0 0 0

0 0 0 vn 0 0

0 0 0 0 vn 0

0 0 0 0 0 vn

�
�V3� = �

vm 0 0 0 0 0

0 vm 0 0 0 0

0 0 0 0 0 0

0 0 0 vm 0 0

0 0 0 0 vm 0

0 0 0 0 0 vm

� ,

�e1� =	
e31

p

e32
p

vpe33
p

0

0

0


 , and �e2� =	
e31

p

e32
p

0

0

0

0


 �8�

In Eq. �8� vp, vn, and vm represent volume fractions of PZTs,
CNTs, and the matrix, respectively. The elimination of field vari-
ables of the constituent phases from Eq. �4� to Eq. �7� yields the
following constitutive relation for the proposed hybrid NRHPC:

��� = �C���� − �e�Ez �9�
where

�C� = �C1��V5�−1 + �C7��V6�−1

�e� = �e1� − �C1��V5�−1�V4��C6�−1�e2� + �C7��V6�−1�V1��C4�−1�e2�

�V4� = �V3� + �V2��C5�−1�C6�, �V5� = �V1� + �V4��C6�−1�C4�

�V6� = �V4� + �V1��C4�−1�C6� and �C7� = �C3� + �C2��C5�−1�C6�
�10�

Comparing Eq. �9� with the constitutive relation �1�1 for a PZT,
the effective piezoelectric coefficients e31, e32, and e33 of the
NRHPC can be identified as e31=e�1�, e32=e�2�, and e33=e�3�.

3 Results and Discussion
Material properties of CNTs, taken from Ref. �5�, and of the

PZT5H and the epoxy are listed in Table 1. Effective properties of
the NRHPC, computed by simultaneously varying volume frac-
tions of CNTs and PZT fibers, are compared with those given by
Smith and Auld �14� for the PZT5H/epoxy composite.

Figure 2 depicts the variation of the effective piezoelectric co-
efficient e31 of the NRHPC with the PZT fiber volume fraction,
and for different volume fractions of CNTs. It is clear from these

plots that the value of e31 of the NRHPC is significantly enhanced
by the addition of CNTs, and equals twice that of the 1–3 PZT5H/
epoxy composites for vn=0.3 and vp=0.4. Furthermore, adding
CNTs also improves values of elastic constants of the NRHPC
over those of the existing 1–3 PZCs. As an example, we illustrate
in Fig. 3 the variation of the effective elastic constant C33 with
respect to the PZT5H fiber volume fraction for different volume
fractions of CNTs. Using Eq. �10�, values of other effective elastic
and piezoelectric constants can be easily computed for any com-
bination of volume fractions of CNTs and PZT fibers. Also, it is
evident from Figs. 2 and 3 that for a particular value of vp, values
of the effective piezoelectric coefficient e31 and elastic properties
increase with an increase in vn. The significant improvement in

Table 1 Material properties of the constituent phases

Material Source
C11

�GPa�
C12

�GPa�
C13

�GPa�
C33

�GPa�
C44

�GPa�
e31

p

�C /m2�
e33

p

�C /m2�

CNT �5,5� �5� 668 404 184 2153 791 - -
CNT �20,20� �5� 148 144 43.5 545 227 - -
CNT �50,50� �5� 55.1 54.9 17.5 218 92 - -
PZT5H �14� 151 98 96 124 23 �5.1 27
Spurr �14� 5.3 3.1 3.1 5.3 0.64 - -

Fig. 2 Effective piezoelectric coefficient e31 of the NRHPC

Fig. 3 Effective elastic coefficient C33 of the NRHPC
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effective properties of the NRHPC is attributed to the fact that
CNT reinforcements enhance the elastic properties of the matrix.
It is also found that the value of the other in-plane effective pi-
ezoelectric coefficient e32 of the NRHPC equals that of the effec-
tive coefficient e31. However, the addition of CNTs does not affect
the value of the effective piezoelectric coefficient e33. Results
plotted in Figs. 4 and 5 reveal that as the diameter of the CNTs
increases, magnitudes of both the e31 and the elastic moduli de-
crease because elastic moduli of a CNT decrease with an increase
in the diameter of the CNT.

4 Conclusions
We have proposed a hybrid piezoelectric composite comprised

of a polymer matrix and single-walled CNTs and piezoceramic
�PZT5H� fibers aligned parallel to each other along the thickness
of the laminate. The PZT5H fibers are poled in the thickness di-

rection. Values of the effective piezoelectric coefficients e31 and
e33 are proportional to the in-plane and the out-of-plane actua-
tions, respectively, due to a voltage applied across the thickness of
the hybrid lamina. Effective moduli of the hybrid lamina have
been determined by using the isostrain and the isostress assump-
tions. It is found that the value of e31 of the proposed hybrid
composite is significantly higher than that of the existing 1–3
piezocomposites �14� at the practically useful volume fraction of
PZT fibers. For a fixed volume fraction of PZT fibers, the value of
e31 for the hybrid composite increases with an increase in the
volume fraction of CNTs, and that of e33 remains unaltered. Elas-
tic moduli of the hybrid composite are also much larger than those
of the existing 1–3 piezocomposites �15�. Because of increase in
the value of e31, the proposed hybrid composite can act as a dis-
tributed actuator for both in-plane and out-of-plane actuations
while the in-plane actuation by the existing 1–3 piezocomposites
is negligibly small �15�.
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